Search results for "Mesoscopic physics"
showing 10 items of 122 documents
A FE-Meshless Multiscale Approach for Masonry Materials
2015
Abstract A FE-Meshless multiscale computational strategy for the analysis of running bond masonry is presented. The Meshless Method (MM) is adopted to solve the boundary value problem (BVP) at the mesoscopic level. The representative unit cell is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter are simulated as non-associated elastic-plastic zero-thickness interfaces with a softening response. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements.
Domain Wall Spin Structures in Mesoscopic Fe Rings probed by High Resolution SEMPA
2016
We present a combined theoretical and experimental study of the energetic stability and accessibility of different domain wall spin configurations in mesoscopic magnetic iron rings. The evolution is investigated as a function of the width and thickness in a regime of relevance to devices, while Fe is chosen as a material due to its simple growth in combination with attractive magnetic properties including high saturation magnetization and low intrinsic anisotropy. Micromagnetic simulations are performed to predict the lowest energy states of the domain walls, which can be either the transverse or vortex wall spin structure, in good agreement with analytical models, with further simulations …
Spontaneous symmetry-breaking pathways: time-resolved study of agarose gelation
1996
Abstract Extensive time-resolved studies of self-assembly of agarose gels, performed with the use of a variety of techniques allowed identification of the initial break of symmetry and the actual path leading to self-assembly at concentrations well below the random percolation threshold. The overall process is seen to occur through the following sequence: (i) break of symmetry in the sol, causing the spontaneous generation of mesoscopic polymer-rich and solvent-rich regions; (ii) percolation, or nearly percolation [see (iv) below], of polymer-rich regions through the sample, still in the sol state; (iii) start of polymer cross-linking within polymer-rich regions; (iv) progress of cross-link…
FLUCTUATIONS IN LIPID BILAYERS: ARE THEY UNDERSTOOD?
2013
We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid phase at a quantitative level. However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes show a signature of the modulated ripple structure, which is a nearby phase observed in the pretransition regime betw…
Atomistic theory of mesoscopic pattern formation induced by bimolecular surface reactions between oppositely charged molecules
2011
The kinetics of mesoscopic pattern formation is studied for a reversible A+B⇌0 reaction between mobile oppositely charged molecules at the interface. Using formalism of the joint correlation functions, non-equilibrium charge screening and reverse Monte Carlo methods, it is shown that labyrinth-like percolation structure induced by (even moderate-rate) reaction is principally non-steady-state one and is associated with permanently growing segregation of dissimilar reactants and aggregation of similar reactants into mesoscopic size domains. A role of short-range and long-range reactant interactions in pattern formation is discussed.
Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling
2008
We present hydrokinetic Lattice Boltzmann and Molecular Dynamics simulations of capillary filling of high-wetting fluids in nano-channels, which provide clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey the Lucas-Washburn law as the main capillary front, z2(t) proportional to t, although with a larger prefactor, which we find to take the same value for both geometries under inspection. Both hydrokinetic and Molecular Dynamics approaches indicate a precursor film thickness of the order of one tenth of the capillary diameter. The quantitative agreement between the hydrokinetic and atomistic m…
Semiempirical pseudopotential approach for nitride-based nanostructures and {\it ab initio} based passivation of free surfaces
2013
We present a semiempirical pseudopotential method based on screened atomic pseudopotentials and derived from \textit{ab initio} calculations. This approach is motivated by the demand for pseudopotentials able to address nanostructures, where \textit{ab initio} methods are both too costly and insufficiently accurate at the level of the local-density approximation, while mesoscopic effective-mass approaches are inapplicable due to the small size of the structures along, at least, one dimension. In this work we improve the traditional pseudopotential method by a two-step process: First, we invert a set of self-consistently determined screened {\it ab initio} potentials in wurtzite GaN for a ra…
Dielectric response of nanoscopic spherical colloids in alternating electric fields: a dissipative particle dynamics simulation.
2012
We study the response of single nanosized spherical colloids in electrolyte solution to an alternating electric field (AC field) by computer simulations. We use a coarse-grained mesoscopic simulation approach that accounts in full for hydrodynamic and electrostatic interactions as well as for thermal fluctuations. The solvent is modeled as a fluid of single Dissipative Particle Dynamics (DPD) beads, and the colloidal particle is modeled as a rigid body made of DPD beads. We compute the mobility and the polarizability of a single colloid and investigate systematically the effect of amplitude and frequency of the AC-fields. Even though the thickness of the Debye layer is not "thin" compared t…
Orientational dynamics of fluctuating dipolar particles assembled in a mesoscopic colloidal ribbon
2017
We combine experiments and theory to investigate the dynamics and orientational fluctuations of ferromagnetic microellipsoids that form a ribbonlike structure due to attractive dipolar forces. When assembled in the ribbon, the ellipsoids display orientational thermal fluctuations with an amplitude that can be controlled via application of an in-plane magnetic field. We use video microscopy to investigate the orientational dynamics in real time and space. Theoretical arguments are used to derive an analytical expression that describes how the distribution of the different angular configurations depends on the strength of the applied field. The experimental data are in good agreement with the…
Polyelectrolyte Electrophoresis in Nanochannels: A Dissipative Particle Dynamics Simulation
2010
We present mesoscopic DPD-simulations of polyelectrolyte electrophoresis in confined nanogeometries, for varying salt concentration and surface slip conditions. Special attention is given to the influence of electroosmotic flow (EOF) on the migration of the polyelectrolyte. The effective polyelectrolyte mobility is found to depend strongly on the boundary properties, i.e., the slip length and the width of the electric double layer. Analytic expressions for the electroosmotic mobility and the total mobility are derived which are in good agreement with the numerical results. The relevant quantity characterizing the effect of slippage is found to be the dimensionless quantity $\kappa \: \delta…