Search results for "Mesoscopic"

showing 10 items of 709 documents

A supercritical-fluid method for growing carbon nanotubes

2007

Large‐scale generation of multiwalled carbon nanotubes (MCNTs) is efficiently achieved through a supercritical fluid technique employing carbon dioxide as the carbon source. Nanotubes with diameters ranging from 10 to 20 nm and lengths of several tens of micrometers are synthesized (see figure). The supercritical‐fluid‐grown nanotubes also exhibit field‐emission characteristics similar to MCNTs grown by chemical‐vapor deposition.

Supercritical fluidsMaterials scienceCarbon nanofiberMechanical EngineeringCarbon nanotubesCarbon nanotubeChemical vapor depositionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSupercritical fluidlaw.inventionCarbon nanotubes multiwalledCondensed Matter::Materials ScienceNanofluidIndustrial technologyChemical engineeringMechanics of MaterialslawFrit compressionChemical vapor depositionGeneral Materials ScienceCarbon nanotube supported catalyst
researchProduct

Spatial development of multiple-gap states in nonequilibrium superconductors

1985

We have studied the gap instability in a superconductor under tunneling injection at high voltages by probing the spatial distribution of the phonon emission. A high sensitivity was achieved by using the fountain pressure of superfluid helium for detecting the phonons. Spatial structures were observed at gap depressions as small as 2%. From their spatial development we find that the quasiparticles diffuse into regions where their density is higher.

SuperfluiditySuperconductivityPhysicsTunnel effectHelium-4Condensed matter physicsBand gapPhononCondensed Matter::SuperconductivityQuasiparticleddc:530Condensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperfluid helium-4Physical Review B
researchProduct

Soliton staircases and standing strain waves in confined colloidal crystals

2009

We show by computer simulation of a two-dimensional crystal confined by corrugated walls that confinement can be used to impose a controllable mesoscopic superstructure of predominantly mechanical elastic character. Due to an interplay of the particle density of the system and the width D of the confining channel, "soliton staircases" can be created along both parallel confining boundaries, that give rise to standing strain waves in the entire crystal. The periodicity of these waves is of the same order as D. This mechanism should be useful for structure formation in the self-assembly of various nanoscopic materials.

SuperstructureMesoscopic physicsMaterials scienceStructure formationCondensed matter physicsFOS: Physical sciencesGeneral Physics and AstronomyCondensed Matter - Soft Condensed MatterColloidal crystalCrystalSoft Condensed Matter (cond-mat.soft)SolitonParticle densityNanoscopic scaleEPL (Europhysics Letters)
researchProduct

Deducing a Drain Spacing Formula by Applying Dimensional Analysis and Self-Similarity Theory

2016

For designing a steady state drainage system a drain flow formula coupled with the Dupuit-Forcheimer form of the differential equation of groundwater flow is used. At first, in this paper the most applied drain flow formulas in steady-state conditions are reviewed and compared using as dependent variable the ratio between the maximum water table height and the distance between two lines of parallel drains. These equation are also tested using experimental field data measured in three plot drained by surface pipe drains having different value of drain spacing. Then, applying the dimensional analysis and the self-similarity theory, a new drain spacing formula is theoretically deduced and comp…

Surface (mathematics)Groundwater flowSelf-similarityDifferential equationField data0208 environmental biotechnologyGeometryDrains Drain spacing formula dimensional analysis self-similarity04 agricultural and veterinary sciences02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAgricultural and Biological Sciences (miscellaneous)020801 environmental engineeringFlow (mathematics)040103 agronomy & agricultureSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali0401 agriculture forestry and fisheriesWater Science and TechnologyCivil and Structural EngineeringMathematicsJournal of Irrigation and Drainage Engineering
researchProduct

Growth, domain structure, and atomic adsorption sites of hBN on the Ni(111) surface

2021

One of the most important functionalities of the atomically thin insulator hexagonal boron nitride (hBN) is its ability to chemically and electronically decouple functional materials from highly reactive surfaces. It is therefore of utmost importance to uncover its structural properties on surfaces on an atomic and mesoscopic length scale. In this paper, we quantify the relative coverages of structurally different domains of a hBN layer on the Ni(111) surface using low-energy electron microscopy and the normal incidence x-ray standing wave technique. We find that hBN nucleates on defect sites of the Ni(111) surface and predominantly grows in two epitaxial domains that are rotated by ${60}^{…

Surface (mathematics)Length scaleMesoscopic physicsMaterials sciencePhysics and Astronomy (miscellaneous)Structure (category theory)EpitaxyStanding waveCrystallographyAdsorptionDomain (ring theory)Physics::Atomic and Molecular ClustersGeneral Materials Scienceddc:530
researchProduct

Rashba splitting of the Tamm surface state on Re(0001) observed by spin-resolved photoemission and scanning tunneling spectroscopy

2020

Physical review research 2(1), 013296 (2020). doi:10.1103/PhysRevResearch.2.013296

Surface (mathematics)Materials scienceCondensed matter physicsScanning tunneling spectroscopyddc:530State (functional analysis)Spin (physics)Condensed Matter::Mesoscopic Systems and Quantum Hall Effect530
researchProduct

Fluorinated Fullerene Molecule on Cu(001) Surface as a Controllable Source of Fluorine Atoms

2018

A coverage-dependent growth of well-ordered copper halogenide structures as a result of fluorinated fullerene molecule adsorption on Cu(001) surface has been studied by means of scanning tunneling ...

Surface (mathematics)Materials sciencechemistry.chemical_element02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesCopperFullerene moleculeSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceGeneral EnergyAdsorptionchemistryCondensed Matter::Superconductivity0103 physical sciencesPhysics::Atomic and Molecular ClustersFluorinePhysics::Chemical PhysicsPhysical and Theoretical Chemistry010306 general physics0210 nano-technologyQuantum tunnellingThe Journal of Physical Chemistry C
researchProduct

Dynamic carrier distribution in quantum wells modulated by surface acoustic waves

2001

We have investigated the dynamics of photogenerated carriers under surface acoustic wave (SAW) fields in GaAs quantum wells using spatially and time-resolved photoluminescence (PL). The frequency and phase of the PL oscillations under a SAW yield information about the carrier distribution and the band-gap modulation induced by the SAW. We directly prove that the transport properties of the carriers ultimately control their distribution, storage and, subsequent recombination in the modulated potential.

Surface (mathematics)PhysicsYield (engineering)Photoluminescencebusiness.industrySurface acoustic wavePhase (waves)Acoustic waveCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials ScienceModulationOptoelectronicsbusinessQuantum well
researchProduct

Surface topography of membrane domains

2010

金沢大学理工研究域数物科学系

Surface (mathematics)Supported lipid bilayerMaterials scienceLipid BilayersBiophysicsNanotechnologyMicroscopy Atomic ForceBiochemistryMembrane LipidsAtomic force microscopyMembrane MicrodomainsAnimalsHumansMesoscopic physicsSphingolipidsAtomic force microscopyLipid microdomainMicroscopic levelMembrane ProteinsBiological membraneCell BiologyLangmuir Blodgett filmCharacterization (materials science)MembraneCholesterolMembrane domainBiochimica et Biophysica Acta - Biomembranes
researchProduct

A mesoscopic mechanical model of the surface tension and some simulation results

2019

Abstract Drops of mercury do not spread on a surface. A metal paper clip can float on water. These phenomena are macroscopic manifestations of molecular interactions and can be explained in terms of surface tension. In this study, we discuss a simple mesoscopic mechanical model of the surface tension and the results of numerical fluid dynamics simulations implemented on the basis of it. We study the droplet formation without and with gravity when it can drop from a narrow hole like a trickling tap and finally the behaviour of free surface liquid in a vessel. Teachers and students can be able to study the surface tension by using the computer simulation as a “tool” for analysing and discussi…

Surface tensionHistoryMesoscopic physicsMaterials scienceMechanicsFluid dynamics. Surface tension. Modelling. Simulation. Smoothed particles hydrodynamics.Computer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct