Search results for "Mesoscopic"

showing 10 items of 709 documents

Особенности двумерных бифуркаций при диссипативном туннелировании электронов в массивах Au наночастиц

2020

Abstract. In framework of the 2D - dissipative tunneling theory in approximation of a rarefied gas of the «instanton - antiinstanton pairs» at a finite temperature under the conditions of an external electric field, the features of tunneling transport for planar structures with quantum dots (QDs) from colloidal gold, that have metamaterial properties, have been studied. It was experimentally shown that, depending on the positioning of the cantilever needle of a combined atomic force and scanning tunneling microscope (AFM / STM), either above a single quantum dot or between two neighboring quantum dots, either a single or double effect of 2D tunneling bifurcations have been observed, respec…

Condensed Matter::Mesoscopic Systems and Quantum Hall EffectЖурнал технической физики
researchProduct

Two-dimensional clusters of liquid He-4

2003

The binding energies of two-dimensional clusters (puddles) of 4He are calculated in the framework of the diffusion Monte Carlo method. The results are very well fitted by a mass formula in powers of x=N−1/2, where N is the number of particles. The analysis of the mass formula allows for the extraction of the line tension, which turns out to be 0.121 K/A. Sizes and density profiles of the puddles are also reported.

Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct

Giant Rydberg excitons in Cu$_{2}$O probed by photoluminescence excitation spectroscopy

2021

Rydberg excitons are, with their ultrastrong mutual interactions, giant optical nonlinearities, and very high sensitivity to external fields, promising for applications in quantum sensing and nonlinear optics at the single-photon level. To design quantum applications it is necessary to know how Rydberg excitons and other excited states relax to lower-lying exciton states. Here, we present photoluminescence excitation spectroscopy as a method to probe transition probabilities from various excitonic states in cuprous oxide, and we show giant Rydberg excitons at $T=38$ mK with principal quantum numbers up to $n=30$, corresponding to a calculated diameter of 3 $\mu$m.

Condensed Matter::Quantum GasesCondensed Matter::Materials ScienceCondensed Matter - Materials ScienceQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectOptics (physics.optics)Physics - Optics
researchProduct

Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.

2022

Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton–polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton–polaritons with an exciton fraction of 50% show a propagation length…

Condensed Matter::Quantum GasesCondensed Matter::OtherPhysics::Opticsmolecular dynamics simulationspolariton transportfysikaalinen kemiaCondensed Matter::Mesoscopic Systems and Quantum Hall EffectelektronitkvasihiukkasetplasmonicsAtomic and Molecular Physics and Opticsnanoparticle arraytetraceneElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencemolekyylifysiikkaplasmoniikkastrong light-matter couplingeksitonitnanohiukkasetmolekyylidynamiikkaElectrical and Electronic EngineeringBiotechnologyACS photonics
researchProduct

Spatial and temporal distribution of phase slips in Josephson junction chains.

2017

Abstract The Josephson effect, tunnelling of a supercurrent through a thin insulator layer between two superconducting islands, is a phenomena characterized by a spatially distributed phase of the superconducting condensate. In recent years, there has been a growing focus on Josephson junction devices particularly for the applications of quantum metrology and superconducting qubits. In this study, we report the development of Josephson junction circuit formed by serially connecting many Superconducting Quantum Interference Devices, SQUIDs. We present experimental measurements as well as numerical simulations of a phase-slip center, a SQUID with weaker junctions, embedded in a Josephson junc…

Condensed Matter::Quantum GasesCondensed Matter::Superconductivitylcsh:Rlcsh:Medicinelcsh:Qlcsh:ScienceCondensed Matter::Mesoscopic Systems and Quantum Hall EffectArticleScientific reports
researchProduct

Resonances over a potential well in an island

2020

In this paper we study the distribution of scattering resonances for a multidimensional semi-classical Schr\"odinger operator, associated to a potential well in an island at energies close to the maximal one that limits the separation of the well and the surrounding sea.

Condensed Matter::Quantum GasesDistribution (number theory)Condensed Matter::OtherScatteringGeneral MathematicsOperator (physics)FOS: Physical sciencesMathematical Physics (math-ph)Mathematics::Spectral TheoryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectsymbols.namesakeMathematics - Analysis of PDEsQuantum mechanicssymbolsFOS: Mathematics35J10 35B34 35P20 47A55Schrödinger's catMathematical PhysicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Direct observation of second-order atom tunnelling

2007

Tunnelling of material particles through a classically impenetrable barrier constitutes one of the hallmark effects of quantum physics. When interactions between the particles compete with their mobility through a tunnel junction, intriguing novel dynamical behaviour can arise where particles do not tunnel independently. In single-electron or Bloch transistors, for example, the tunnelling of an electron or Cooper pair can be enabled or suppressed by the presence of a second charge carrier due to Coulomb blockade. Here we report on the first direct and time-resolved observation of correlated tunnelling of two interacting atoms through a barrier in a double well potential. We show that for we…

Condensed Matter::Quantum GasesJosephson effectQuantum PhysicsMultidisciplinaryCondensed matter physicsChemistryFOS: Physical sciencesCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterTunnel effectTunnel ionizationUltracold atomTunnel junctionCondensed Matter::SuperconductivityCooper pairQuantum Physics (quant-ph)Quantum tunnellingOther Condensed Matter (cond-mat.other)Nature
researchProduct

Tight-binding study of the optical properties of GaN/AlN polar and nonpolar quantum wells

2009

The electronic structure of wurtzite semiconductor superlattices (SLs) and quantum wells (QWs) is calculated by using the empirical tight-binding method. The basis used consists of four orbitals per atom (sp3 model), and the calculations include the spin-orbit coupling as well as the strain and electric polarization effects. We focus our study on GaN/AlN QWs wells grown both in polar (C) and nonpolar (A) directions. The band structure, wave functions and optical absorption spectrum are obtained and compared for both cases.

Condensed Matter::Quantum GasesMaterials scienceAbsorption spectroscopyCondensed matter physicsCondensed Matter::OtherGeneral Engineering: Physics [G04] [Physical chemical mathematical & earth Sciences]Gallium nitrideElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials Sciencechemistry.chemical_compoundTight bindingAtomic orbitalchemistry: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Tight-bindingElectronic band structureQuantum wellWurtzite crystal structure
researchProduct

Wide-range thermometer based on the temperature-dependent conductance of planar tunnel junctions

2000

The effect of the Fermi–Dirac distribution on the current through standard planar tunnel junctions is a suitable basis for thermometry in a wide temperature range. In particular, it extends the range spanned by Coulomb-blockade thermometers up to room temperature.

Condensed Matter::Quantum GasesPhysics and Astronomy (miscellaneous)Condensed matter physicsChemistryCoulomb blockadeConductanceAtmospheric temperature rangeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPlanarCondensed Matter::SuperconductivityThermometerResistance thermometerCurrent densityQuantum tunnellingApplied Physics Letters
researchProduct

Magnetic Direct-Write Skyrmion Nanolithography

2020

Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to con…

Condensed Matter::Quantum GasesPhysicsApplied physicsCondensed matter physicsSkyrmionHigh Energy Physics::PhenomenologyGeneral EngineeringNucleationGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetic fieldNanolithographyLattice (order)MetastabilityGeneral Materials ScienceMagnetic force microscope0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsACS Nano
researchProduct