Search results for "Messenger-Rna"

showing 10 items of 26 documents

Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects

2004

The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, an…

Drugmedicine.medical_specialtymedia_common.quotation_subjectPopulationDevelopmental toxicityserotonin-reuptake inhibitorsEpilepsyNeurochemicalmedicineAnimalsHumansprenatal phenytoin exposurePsychiatryeducationbeta-adrenergic-receptorsmedia_commonPharmacologyrat-brain developmentPsychotropic Drugseducation.field_of_studybusiness.industryMental DisordersNeurotoxicityBrainbeta-adrenergic-receptors; central-nervous-system; cerebellar granule cells; developing cerebral-cortex; fetal hydantoin syndrome; messenger-rna expression; prenatal phenytoin exposure; rat-brain development; serotonin-reuptake inhibitors; st-johns-wortmedicine.diseaseMental illnessdeveloping cerebral-cortexmessenger-rna expressionMoodcerebellar granule cellsMolecular Medicinecentral-nervous-systemPlant Preparationsst-johns-wortfetal hydantoin syndromebusiness
researchProduct

Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutr…

2019

Grape must is a sugar‐rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genet…

Grape juicemedia_common.quotation_subjectAdaptive evolutionSaccharomyces cerevisiaeWineIndustrial fermentationSaccharomyces cerevisiaeMicrobiologyYeast populationsCompetition (biology)Saccharomyces03 medical and health sciencesMessenger-RNAMechanismsVitisGene-expressionFood scienceAdaptationEcological interactionsEcology Evolution Behavior and Systematics030304 developmental biologymedia_commonWine0303 health sciencesbiology030306 microbiologyProteinStrain (biology)food and beveragesNutrientsbiology.organism_classificationAdaptation PhysiologicalYeastPhenotypeFermentationFermentationAdaptationPopulation genomicsEnvironmental Microbiology
researchProduct

The Odd Sibling: Features ofβ3-Adrenoceptor Pharmacology

2014

beta(3)-Adrenoceptor agonists have recently been introduced for the treatment of overactive urinary bladder syndrome. Their target, the beta(3)-adrenoceptor, was discovered much later than beta(1)- and beta(2)-adrenoceptors and exhibits unique properties which make extrapolation of findings from the other two subtypes difficult and the beta(3)-adrenoceptor a less-understood subtype. This article discusses three aspects of beta(3)-adrenoceptor pharmacology. First, the ligand-recognition profile of beta(3)-adrenoceptors differs considerably from that of the other two subtypes, i.e., many antagonists considered as nonselective actually are beta(3)-sparing, including propranolol or nadolol. Man…

HUMAN BETA-3-ADRENERGIC RECEPTORDOWN-REGULATIONCell typemedicine.medical_specialtyADRENERGIC-RECEPTORMOUSE BETA(3)-ADRENOCEPTORAdrenergic receptormedicine.medical_treatmentSIGNAL-TRANSDUCTIONAdrenergic beta-3 Receptor AgonistsPropranololPharmacologyBiologyLigandsDownregulation and upregulationInternal medicinemedicineAnimalsHumansMOLECULAR CHARACTERIZATIONReceptorBETA-ADRENOCEPTOR AGONISTSDesensitization (medicine)PharmacologyMessenger RNABinding SitesPolymorphism GeneticOVERACTIVE BLADDEREndocrinologyGene Expression RegulationReceptors Adrenergic beta-3Molecular MedicineAdrenergic beta-3 Receptor AntagonistsSignal transductionURINARY-BLADDERMESSENGER-RNAmedicine.drugMolecular Pharmacology
researchProduct

The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance

2005

During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expr…

Hypothalamo-Hypophyseal Systemmedicine.medical_specialtyCannabinoid receptorEndocrinology Diabetes and Metabolismmedicine.medical_treatmentmedia_common.quotation_subjectPituitary-Adrenal SystemEndocrine SystemBiologyEndocrinologyInternal medicineCannabinoid Receptor ModulatorsmedicineCannabinoid receptor type 2ACID AMIDE HYDROLASEAnimalsHumansEndocrine systemMESSENGER-RNA EXPRESSIONVAGAL AFFERENT NEURONSObesityReceptors CannabinoidReceptorCannabinoid Receptor Antagonistsmedia_commonmusculoskeletal neural and ocular physiologyACTIVATED PROTEIN-KINASECENTRAL-NERVOUS-SYSTEMDISTINCT NEURONAL SUBPOPULATIONSAppetiteEndocannabinoid systemCANNABINOID CB1 RECEPTORCORTICOTROPIN-RELEASING-FACTOREndocrinologynervous systemCannabinoid receptor antagonistlipids (amino acids peptides and proteins)PITUITARY-ADRENAL AXISPREIMPLANTATION MOUSE EMBRYOCannabinoidEnergy MetabolismNeurosciencepsychological phenomena and processesEndocannabinoidsEndocrine Reviews
researchProduct

The case for strategic international alliances to harness nutritional genomics for public and personal health

2005

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need …

Knowledge managementNutritional genomicsBiomedical Researchgenetic association030309 nutrition & dieteticsgenotypeInternational CooperationMedicine (miscellaneous)Variation (Genetics)Human genetic variationmedical researchgene–nutrient interactionsVoeding Metabolisme en GenomicaEatingNutrigenomicsenvironmental factorgenetic variabilityGlobal healthNutritional Physiological PhenomenaHealth diaparitiesimmune function2. Zero hunger0303 health sciencesNutrition and Dieteticsstrategic international alliancesarticleGenomicsdiabetes-related traitsdietary fiberHealth equityMetabolism and Genomics3. Good healthNutrigenomicsmessenger-rnaHealthMetabolisme en Genomica/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingNutrition Metabolism and Genomicshealth diaparitiesmedicine.medical_specialtyResearch programhapmap projectpopulation stratificationheredityphenotypeBiologyEnvironmentStrategic international alliancesnutritional health03 medical and health sciencesGene interactionnutrigenomicsSDG 3 - Good Health and Well-beingVoedingmedicineAnimalsHumanscomplex diseaseshuman030304 developmental biologygene identificationVLAGNutritionnonhumanbusiness.industryGenome HumanPublic healthResearchGenetic Variationpopulation geneticsGene-nutrient interactionscultural factorNutrition PhysiologyBiotechnologyDisease Models AnimalHarnessmolecular geneticsbusinessdietary intakepublic health servicecoronary-heart-diseasecarbohydrate ingestionBritish Journal of Nutrition
researchProduct

Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on Hormones of Energy Balance in a TCDD-Sensitive and a TCDD-Resistant Rat Strain

2014

One of the hallmarks of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a drastically reduced feed intake by an unknown mechanism. To further elucidate this wasting syndrome, we followed the effects of a single large dose (100 μg/kg) of TCDD on the serum levels of several energy balance-influencing hormones, clinical chemistry variables, and hepatic aryl hydrocarbon receptor (AHR) expression in two rat strains that differ widely in their TCDD sensitivities, for up to 10 days. TCDD affected most of the analytes in sensitive Long-Evans rats, while there were few alterations in the resistant Han/Wistar strain. However, analyses of feed-restricted unexposed Long-Evans rats i…

LeptinFOOD-INTAKETCDDFGF21Polychlorinated Dibenzodioxinsmedicine.medical_treatmentAHRwasting syndromeacute toxicity413 Veterinary science8-tetrachlorodibenzo-p-dioxinlcsh:Chemistry2378-tetrachlorodibenzo-<i>p</i>-dioxin; TCDD; wasting syndrome; energy balance; hormones; acute toxicity; strain differences; AHRPPAR-ALPHAInsulinMESSENGER-RNA EXPRESSIONInsulin-Like Growth Factor Ita315Receptorlcsh:QH301-705.5AH RECEPTORSpectroscopyenergiatasebiologyChemistryLeptinGeneral MedicineCENTRAL LEPTIN INFUSIONstrain differencesComputer Science ApplicationsLiverGhrelinAdiponectinARYL-HYDROCARBON RECEPTOR7medicine.medical_specialty3education2GlucagonCatalysisArticleInorganic ChemistrySpecies SpecificityInternal medicinemedicineAnimals2378-tetrachlorodibenzo-p-dioxinRats Long-EvansRNA MessengerPhysical and Theoretical ChemistryRats WistarCARBOXYKINASE PEPCK ACTIVITYMolecular BiologyI IGF-IhormonesGrowth factorOrganic ChemistryBody WeightAryl hydrocarbon receptorGlucagonenergy balancehormonitRatsFibroblast Growth FactorsEndocrinologylcsh:Biology (General)lcsh:QD1-999Receptors Aryl Hydrocarbonbiology.proteinGROWTH-FACTOR 21Energy MetabolismHormoneInternational Journal of Molecular Sciences
researchProduct

Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index

2016

IF 2.126; International audience; Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (lifestyle) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascad…

Male0301 basic medicineDiseaseBioinformaticsBody Mass Index0302 clinical medicinePutative roleSurveys and QuestionnairesGenotypeMedicineCzech RepublicAged 80 and over2. Zero hungerGeneticsbiologyAlzheimer's disease3. Good healthRisk-factorsArachidonic acidNeurologyArachidonate 5-lipoxygenaseActivating proteinFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neuronal 5-LipoxygenaseLeukotrienesCurcuminGenotypeDna methylationFLAPPolymorphism Single NucleotideMouse modelAssociation03 medical and health sciencesMessenger-RnaAlzheimer DiseaseGeneticsHumansSNPPolymorphismSingle-Nucleotide polymorphisms5-lipoxygenase-activating proteinLife StyleGenetic Association StudiesAgedAmyloidotic phenotypeInflammationCaffeic acidArachidonate 5-Lipoxygenasebusiness.industryBody WeightOdds ratio030104 developmental biology[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Relative riskbiology.proteinNeurology (clinical)businessBody mass index030217 neurology & neurosurgeryJournal of the Neurological Sciences
researchProduct

Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin

2015

In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-r-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothala…

MaleFOOD-INTAKETCDDPolychlorinated DibenzodioxinsTime FactorsTranscription GeneticMicroarrayTISSUE GROWTH-FACTORAHRAH GENE BATTERY413 Veterinary scienceToxicologyToxicogeneticsfeed restrictionTranscriptomeNAD(P)H Dehydrogenase (Quinone)RESISTANT RATheterocyclic compoundsMESSENGER-RNA EXPRESSIONhypothalamusWastingreproductive and urinary physiologyOligonucleotide Array Sequence Analysisbiologyta31413. Good healthPROBE LEVELHypothalamusToxicityENERGY-BALANCEmedicine.symptommicroarrayARYL-HYDROCARBON RECEPTORendocrine systemmedicine.medical_specialtyta3111Species SpecificityInternal medicineCytochrome P-450 CYP1A1medicineAnimalsRats Long-EvansRNA MessengerWasting SyndromeRats WistarWasting SyndromeGene Expression Profilingta1184Lethal doseAryl hydrocarbon receptorstomatognathic diseasesEndocrinologyINDUCED ANOREXIAGene Expression Regulationbiology.proteinToxicology
researchProduct

Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions : a study on postmenopausal mo…

2014

MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case-control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen-based hormone replacement therapy (HRT) to explore estrogen-dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54-62-years-old monozygotic female twin pairs discordant for HRT (median 7 years). MCF-7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the act…

MaleMICRORNASMonozygotic twinmenopausePATHWAYMice0302 clinical medicineMyocyteInsulin-Like Growth Factor IIN-VIVO0303 health sciencesphosphorylationAge FactorsBREAST-CANCER CELLSWOMENMiddle Aged3142 Public health care science environmental and occupational healthPostmenopauseESTROGENmedicine.anatomical_structureMCF-7 CellsmTORGROWTHFemaleAUTOPHAGYMESSENGER-RNASignal TransductionIGF-1 receptormedicine.medical_specialtyHormone Replacement Therapymedicine.drug_classmiR-142-3pBiology03 medical and health sciencesInternal medicinemicroRNAmedicineAnimalsHumansMuscle SkeletalProtein kinase BPI3K/AKT/mTOR pathwayAged030304 developmental biologyAKTagingSkeletal muscleOriginal ArticlesTwins MonozygoticCell BiologyAKT; FOXO3A; IGF-1 signaling; IGF-1R; aging; mTOR; menopause; miR-142-3p; miR-182; miR-223; phosphorylationmiR-223EndocrinologyEstrogenCase-Control StudiesmiR-1823121 General medicine internal medicine and other clinical medicineFOXO3AIGF-1 signalingIGF-1R030217 neurology & neurosurgeryHUMAN LONGEVITYHormone
researchProduct

Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin

2015

Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100 mu g/kg of TCDD at 1 or 4 days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysi…

MaleTCDDPolychlorinated DibenzodioxinsTime FactorsTranscription GeneticPolychlorinated dibenzodioxinsAHRAH GENE BATTERYAdipose tissueWhite adipose tissueRESISTANT413 Veterinary scienceToxicologyfeed restrictionTranscriptomechemistry.chemical_compoundGene Regulatory Networksheterocyclic compoundsreproductive and urinary physiologyta317biology3. Good healthPROBE LEVELLUNG-CANCER CELLSToxicityEnvironmental PollutantsMESSENGER-RNAARYL-HYDROCARBON RECEPTORSTRAINmedicine.medical_specialtyAdipose Tissue WhiteWEIGHT-LOSSta3111Immune systemSpecies Specificitytranscriptomic profilingwhite adipose tissueInternal medicinemedicineAnimalsHumansRats Long-EvansRats WistarCaloric RestrictionPharmacologyGene Expression Profilingta1184Lipid metabolismAryl hydrocarbon receptorstomatognathic diseasesEndocrinologyGene Expression RegulationchemistryDIOXIN-TREATED RATSbiology.proteinToxicology and Applied Pharmacology
researchProduct