Search results for "Metabolite"

showing 10 items of 551 documents

Bioconcentration, biotransformation and elimination of pyrene in the arctic crustacean Gammarus setosus (Amphipoda) at two temperatures

2015

The influence of temperature on the bioaccumulation, toxicokinetics, biotransformation and depuration of pyrene was studied in the arctic marine amphipod Gammarus setosus. A two-compartment model was used to fit experimental values of total body burden, total metabolites and parent pyrene concentrations and to calculate toxicokinetic variables derived for two experimental treatments (2 and 8 °C). No statistically significant differences were observed with temperature for these toxicokinetic variables or bioconcentration factors. Contrarily, the Q10 values suggested that the toxicokinetic variables ke and km were temperature-dependent. This may be explained by the high standard deviation of …

010504 meteorology & atmospheric sciencesMetaboliteta1172polycyclic aromatic hydrocarbonsQ10Bioconcentration010501 environmental sciencesAquatic ScienceOceanography01 natural sciencesGammarus setosusSvalbardchemistry.chemical_compoundBiotransformationtoxicokineticsAnimalsToxicokineticsAmphipoda14. Life underwaterBiotransformation0105 earth and related environmental sciencesPyrenesbiologyArctic RegionsChemistryTemperatureGeneral Medicinebiology.organism_classificationPollutiondepurationarctic invertebratesKinetics13. Climate actionuptakeBioaccumulationEnvironmental chemistryPyreneWater Pollutants ChemicalEnvironmental MonitoringMarine Environmental Research
researchProduct

Transcriptional responses to pre-flowering leaf defoliation in grapevine berry from different growing sites, years, and genotypes

2017

Leaf removal is a grapevine canopy management technique widely used to modify the source–sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome trans…

0106 biological sciences0301 basic medicineCanopyBerry transcriptome; Flavonoid; Grapevine; Pre-flowering defoliation; Secondary metabolite; Plant ScienceBerry transcriptomeBerryPlant Sciencelcsh:Plant cultureBiology01 natural sciencesTranscriptomeCropSecondary metabolite03 medical and health scienceschemistry.chemical_compoundAuxinSettore AGR/07 - Genetica AgrariaBotanylcsh:SB1-1110JasmonateAbscisic acidOriginal Research2. Zero hungerchemistry.chemical_classificationfungifood and beveragesRipening15. Life on landPre-flowering defoliationberry transcriptome; flavonoid; grapevine; pre-flowering defoliation; secondary metaboliteSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryFlavonoidGrapevine010606 plant biology & botany
researchProduct

The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

2016

Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenol…

0106 biological sciences0301 basic medicineEthylenePhysiologyMetabolitePlant Sciencephenolic compoundsBiology01 natural sciencesCinnamic acid03 medical and health scienceschemistry.chemical_compoundMetabolomicsmethy jasmonatePhysiology (medical)ethyleneOriginal ResearchMethyl jasmonateCatharanthus roseusJasmonic acidCatharanthus roseusbiology.organism_classification030104 developmental biologychemistryBiochemistrynon-targeted metabolomicsSalicylic acid010606 plant biology & botanyFrontiers in Physiology
researchProduct

RNA-Seq analysis to investigate alternate bearing mechanism in Pistacia vera L

2018

Pistachio (Pistacia vera L.) production suffers a high level of alternate bearing. The mechanism underlying this negative phenomenon is different from other species, such as apple and olive. Pistachio produces a high number of inflorescence buds every year that in heavy cropping trees (“ON”) mostly fall during the kernel development phase, which occurs in July-August. Primary metabolites (i.e., carbohydrates) play a key role in the signaling related to inflorescence bud abscission. In this work, RNA-Seq was used as a tool to investigate transcriptome of inflorescence buds and fruits, sampled from branches with low (“OFF”) and high (“ON”) crop load. Reference based RNA-Seq analysis using Ara…

0106 biological sciences0301 basic medicineRNA-SeqHorticulture01 natural sciencesTranscriptome03 medical and health sciencesAbscissionBotanyArabidopsis thalianaInflorescence bud abscissionRNA-SeqGenePistaciabiologyfungiCrop loadfood and beveragesPrimary metabolitebiology.organism_classificationAlternate bearingSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologyInflorescenceTranscriptome010606 plant biology & botany
researchProduct

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…

2017

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany
researchProduct

Clone-Dependent Expression of Esca Disease Revealed by Leaf Metabolite Analysis

2019

International audience; Grapevine trutk diseases, especially Esca, are of major concern since they gradually alter vineyards worldwide and cause heavy economic losses. The expression of Esca disease symptoms depends on several factors, including the grapevine cultivar. In this context, a possible clone-dependent expression of the Esca disease was studied. Two clones of 'Chardonnay' grown in the same plot were compared according to their developmental and physiological traits, metabolome, and foliar symptom expression. Analysis of their leaf metabolome highlighted differences related to symptom expression. Interestingly, the content of a few specific metabolites exhibited opposite variations…

0106 biological sciences0301 basic medicine[SDV]Life Sciences [q-bio]EscaClone (cell biology)Context (language use)DiseasePlant ScienceBiologylcsh:Plant culture01 natural sciences03 medical and health sciencesMetabolomics[SDV.IDA]Life Sciences [q-bio]/Food engineeringMetabolomelcsh:SB1-1110Cultivargrapevine trunk diseasesComputingMilieux_MISCELLANEOUSOriginal Research2. Zero hungerclonefood and beveragesMetabolite analysismetabolomicsVitis vinifera;grapevine trunk diseases;clone;metabolomics;Esca;3D fluorescenceHorticulture030104 developmental biologyVitis viniferaShoot3D fluorescence[SDV.IB]Life Sciences [q-bio]/Bioengineering010606 plant biology & botany
researchProduct

Increased illumination levels enhance biosynthesis of aloenin A and aloin B in Aloe arborescens Mill., but lower their per-plant yield

2021

Abstract Leaves of Aloe arborescens Mill. are a relevant source of secondary metabolites of pharmaceutical relevance. Notwithstanding, specialized cultivations of A. arborescens are still rather limited, and a straightforward agronomical research addressed to the obtainment of high-quality material is lacking. With the purpose to fill this gap, from 2016 to 2018, a trial was arranged to evaluate the growth and development of A. arborescens, along with the production of four active metabolites (aloin A and B, aloenin A, and isoaloeresin D) with varying some growth conditions. Two growth substrates (“A”- a commercial substrate, and “B”- the same substrate + 20 % perlite), two durations of pre…

0106 biological sciencesAloe arborescensAloin01 natural scienceschemistry.chemical_compoundaloinAloe arborescensLeaf sizeDry matterbiology010405 organic chemistrysecondary metabolitesCrop yieldbiology.organism_classificationaloenin0104 chemical sciencesAloe arborescens Aloenin Aloin Cultivation Secondary metabolites ShadingHorticultureLight intensitychemistrycultivationPerliteShadingAgronomy and Crop Scienceshading010606 plant biology & botany
researchProduct

Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics

2008

We measured the concentrations of ultraviolet (UV)-absorbing phenolics varying in response to exclusion of either solar UV-B or both solar UV-A and UV-B radiations in leaves of grey alder (Ainus incana) and white birch (Betula pubescens) trees under field conditions. In alder leaves 20 and in birch leaves 13 different phenolic metabolites were identified. The response to UV exclusion varied between and within groups of phenolics in both tree species. The changes in concentration for some metabolites suggest effects of only UV-A or UV-B, which band being effective depending on the metabolite. For some other metabolites, the results indicate that UV-A and UV-B affect concentrations in the sam…

0106 biological sciencesBetulaceae0303 health sciencesGlobal and Planetary ChangeAlnus incanaEcologybiologyChemistryMetaboliteBetula pubescens15. Life on landbiology.organism_classification01 natural sciencesOzone depletionAlder03 medical and health scienceschemistry.chemical_compoundAlnus glutinosa13. Climate actionBotanyEnvironmental ChemistryPhenols030304 developmental biology010606 plant biology & botanyGeneral Environmental ScienceGlobal Change Biology
researchProduct

Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrastin…

2016

St. John's Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass und…

0106 biological sciencesBiomassPlant Science01 natural scienceschemistry.chemical_compoundNutrientGuttiferae sensu lato; Hypericaceae; Naphthodianthrones; Phenols; Phloroglucinols; St. John’s Wort; Flowers; Hypericum; Mycorrhizae; Perylene; Phloroglucinol; Phosphorus; Plant Extracts; TerpenesMycorrhizaeGuttiferae sensu latoPerylenemedia_commonAnthracenesbiologyNaphthodianthronefood and beveragesHypericum perforatumPhosphorus04 agricultural and veterinary sciencesGeneral MedicineHypericinSettore AGR/02 - Agronomia E Coltivazioni ErbaceeHypericumHypericummedicine.drugmedia_common.quotation_subjectFlowersSecondary metabolitePhloroglucinolCompetition (biology)GeneticPhenolsBotanyGeneticsmedicinePhloroglucinolsGuttiferae sensu lato; Hypericaceae; Naphthodianthrones; Phenols; Phloroglucinols; St. John’s Wort; Ecology Evolution Behavior and Systematics; Molecular Biology; Genetics; Plant ScienceMolecular BiologyEcology Evolution Behavior and SystematicsPhenolPlant ExtractsTerpenesfungiHypericaceaebiology.organism_classificationEcology Evolution Behavior and SystematicHyperforinchemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesNaphthodianthronesSt. John’s Wort010606 plant biology & botany
researchProduct

Effects of temperature on total phenolic compounds in Cystoseira amentacea (C. Agardh) Bory (Fucales, Phaeophyceae) from southern Mediterranean Sea

2015

The aim of this study was to test the effects of temperature on phenolic content of the brown seaweed Cystoseira amentacea. Phenolic compounds are secondary metabolites involved in different protection mechanisms as, for example, against grazers, epiphytes and UV radiation. Seasonal variations of phenolic content in C. amentacea were analysed and laboratory experiments, in which C. amentacea was exposed to an increase of temperature (25°C and 30°C), were performed. Total phenolic content (TPC) was determined colorimetrically with the Folin–Ciocalteu reagent. In C. amentacea, a seasonal pattern in TPC was observed, with a maximum value in winter-spring. C. amentacea responded significantly t…

0106 biological sciencesCystoseira amentacea Mediterranean Sea phenols secondary metabolites temperature variations010504 meteorology & atmospheric sciencesbiology010604 marine biology & hydrobiologySettore BIO/02 - Botanica SistematicaCystoseira amentaceaPlant Sciencebiology.organism_classification01 natural sciencesMediterranean seaBrown seaweedBotanySettore BIO/04 - Fisiologia VegetaleEpiphyteFucalesEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct