Search results for "Methylhydrazines"
showing 7 items of 27 documents
Administration of L-carnitine and mildronate improves endothelial function and decreases mortality in hypertensive Dahl rats.
2010
Hypertension is a well established risk factor for the development of cardiovascular diseases and increased mortality. This study was performed to investigate the effects of the administration of L-carnitine or mildronate, an inhibitor of L-carnitine biosynthesis, or their combination on the development of hypertension-related complications in Dahl salt-sensitive (DS) rats fed with a high salt diet. Male DS rats were fed laboratory chow containing 8% NaCl from 7 weeks of age. Experimental animals were divided into five groups and treated for 8 weeks with vehicle (water; n = 10), L-carnitine (100 mg/kg, n = 10), mildronate (100 mg/kg, n = 10) or a combination of L-carnitine and mildronate at…
Carnitine congener mildronate protects against stress- and haloperidol-induced impairment in memory and brain protein expression in rats.
2014
The present study investigates the efficacy of mildronate, a carnitine congener, to protect stress and haloperidol-induced impairment of memory in rats and the expression of brain protein biomarkers involved in synaptic plasticity, such as brain-derived neurotrophic factor (BDNF), acetylcholine esterase and glutamate decarboxylase 67 (GAD67). Two amnesia models were used: 2h immobilization stress and 3-week haloperidol treatment. Stress caused memory impairment in the passive avoidance test and induced a significant 2-fold BDNF elevation in hippocampal and striatal tissues that was completely inhibited by mildronate. Mildronate decreased the level of GAD67 (but not acetylcholine esterase) e…
Carnitine transport into muscular cells. inhibition of transport and cell growth by mildronate
2000
Carnitine is involved in the transfer of fatty acids across mitochondrial membranes. Carnitine is found in dairy and meat products, but is also biosynthesized from lysine and methionine via a process that, in rat, takes place essentially in the liver. After intestinal absorption or hepatic biosynthesis, carnitine is transferred to organs whose metabolism is dependent on fatty acid oxidation, such as heart and skeletal muscle. In skeletal muscle, carnitine concentration was found to be 50 times higher than in the plasma, implicating an active transport system for carnitine. In this study, we characterized this transport in isolated rat myotubes, established mouse C2C12 myoblastic cells, and …
Effect of inhibiting carnitine biosynthesis on male rat sexual performance.
2008
l-carnitine has a documented role as a cofactor in cellular energy metabolism and fatty acid beta-oxidation pathways and it has also been considered to function in reproductive biology. We investigated whether decreasing concentrations of L-carnitine using an inhibitor of its biosynthesis, mildronate (3-(2,2,2-trimethylhydrazinium)-propionate), would influence the sexual behavior or sperm quality in male rats. Mildronate treatment induced a significant decrease in carnitine concentration and an increase in gamma-butyrobetaine (GBB) concentration in both plasma and testes extracts. However, the expression of carnitine palmitoyltransferase I in testes and testosterone concentration in plasma …
Enhancement of activities relative to fatty acid oxidation in the liver of rats depleted of l-carnitine by d-carnitine and a γ-butyrobetaine hydroxyl…
1995
Abstract This study was designed to examine whether the depletion of l -carnitine may induce compensatory mechanisms allowing higher fatty acid oxidative activities in liver, particularly with regard to mitochondrial carnitine palmitoyltransferase I activity and peroxisomal fatty acid oxidation. Wistar rats received d -carnitine for 2 days and 3-(2,2,2-trimethylhydrazinium)propionate (mildronate), a non-competitive inhibitor of γ-butyrobetaine hydroxylase, for 10 days. They were starved for 20 hr before being sacrificed. A dramatic reduction in carnitine concentration was observed in heart, skeletal muscles and kidneys, and to a lesser extent, in liver. Triacylglycerol content was found to …
Mildronate and its neuroregulatory mechanisms: targeting the mitochondria, neuroinflammation, and protein expression.
2013
This review for the first time summarizes the data obtained in the neuropharmacological studies of mildronate, a drug previously known as a cardioprotective agent. In different animal models of neurotoxicity and neurodegenerative diseases, we demonstrated its neuroprotecting activity. By the use of immunohistochemical methods and Western blot analysis, as well as some selected behavioral tests, the new mechanisms of mildronate have been demonstrated: a regulatory effect on mitochondrial processes and on the expression of nerve cell proteins, which are involved in cell survival, functioning, and inflammation processes. Particular attention is paid to the capability of mildronate to stimulate…
Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
2014
Abstract Aims Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. Main methods Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-car…