Search results for "Microorganism"

showing 10 items of 449 documents

Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils

2018

AbstractNitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the atmosphere´s primary oxidant. An unknown strong daytime source of HONO is required to explain measurements in ambient air. Emissions from soils are one of the potential sources. Ammonia-oxidizing bacteria (AOB) have been identified as possible producers of these HONO soil emissions. However, the mechanisms for production and release of HONO in soils are not fully understood. In this study, we used a dynamic soil-chamber system to provide direct evidence that gaseous emissions from nitrifying pure cultures contain hydroxylamine (NH2OH), which is subsequently converted to HONO in a heterogeneous reaction w…

010504 meteorology & atmospheric sciencesMicroorganismScienceHeterotrophNitrous AcidHydroxylamine010501 environmental sciences01 natural sciencesArticlechemistry.chemical_compoundSoilHydroxylamineAmmoniaSoil Microbiology0105 earth and related environmental sciencesNitrous acidMultidisciplinarybiologyBacteriaAtmosphereHydroxyl RadicalQRbiology.organism_classificationArchaeaNitrificationchemistryNitrifying bacteriaEnvironmental chemistryMedicineHydroxyl radicalNitrificationGasesSoil microbiologyOxidation-ReductionScientific Reports
researchProduct

Changes in freshwater sediment microbial populations during fermentation of crude glycerol

2020

This work was supported by the Latvian Council of Science , project NN-CARMA, project No. lzp-2018/1-0194.

0106 biological sciences0301 basic medicineFirmicutesMicroorganismlcsh:BiotechnologyMicroorganismsFirmicutes01 natural sciencesApplied Microbiology and BiotechnologyActinobacteriaButyric acid03 medical and health scienceschemistry.chemical_compound010608 biotechnologylcsh:TP248.13-248.65:NATURAL SCIENCES:Physics [Research Subject Categories]GlycerolFood sciencelcsh:QH301-705.5ClostridiumCrude glycerolbiologyFreshwater sediment microbial populations fermentationbiology.organism_classification6. Clean waterActinobacteriaqPCR030104 developmental biologychemistryMicrobial population biologylcsh:Biology (General)Biodiesel productionFermentationAnaerobic fermentationGammaproteobacteriaBiotechnologyElectronic Journal of Biotechnology
researchProduct

Nitric oxide: a multitask player in plant–microorganism symbioses

2016

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partner…

0106 biological sciences0301 basic medicineMicroorganism[SDV]Life Sciences [q-bio]LichenBiology01 natural sciencesRhizobia03 medical and health sciencesinteraction microorganisme végétalSymbiosisNitrogen fixationnitric oxideBotanyPlant symbiosisMycorrhizamicrobiologieLichenoxyde nitriqueObligateEcologyHost (biology)fungifood and beveragesbiology.organism_classificationsymbiosisLegume030104 developmental biologyNitrogen fixationPlant growth-promoting rhizobia (PGPR)MycorrhizasymbioseLegume Lichen Mycorrhiza Nitric oxide Nitrogen fixation Plant growth-promoting rhizobia (PGPR) Plant symbiosis Rhizobium010606 plant biology & botanyRhizobium
researchProduct

Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase.

2017

34 p.-4 fig.-1 tab.

0106 biological sciences0301 basic medicineSCFAsBreast-fedStaphylococcus hominisMicroorganismmedicine.medical_treatmentOligosaccharidesXyloseBiologyXylosidase01 natural sciencesAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound010608 biotechnologyXylobiosemedicineGlycoside hydrolaseEndo-14-beta XylanasesPrebioticHydrolysisGeneral MedicineXylanLactic acid030104 developmental biologyPrebioticschemistryBiochemistryTalaromycesXOSXylanaseXylansMicrobiomeBifidobacteriumFood ScienceFood chemistry
researchProduct

Soil microbiome of primeval forest ecosystems in Transkarpathia

2018

The aim of this study was to investigate the soil microbiome of primeval forest ecosystems, namely the structure of microbial communities,the number of major ecological-functional groups, functional parameters such as: soil toxicity, as well as enzymatic activity of the soil by the level of catalase and invertase. To analyze the successional processes in the soil microbiocenosis due to the influence of endogenous and exogenous factors. To estimate the integrity of microbial communities in different edaphotopes of primeval forest ecosystems. Methods. Microbiological studies of soil were carried out according to generally accepted methods in soil microbiology. Enzymatic activity of the soil: …

0106 biological sciences0301 basic medicineecosystemgeographygeography.geographical_feature_categoryEcologyintegrity of communitiesenzymatic activityGeneral MedicineOld-growth forest010603 evolutionary biology01 natural sciencesprimeval forestsoil03 medical and health sciences030104 developmental biologyEnvironmental scienceEcosystemMicrobiomemicroorganismsMikrobiologičnij Žurnal
researchProduct

Plant defense responses induced by arbuscular mycorrhizal fungi

2002

Plants in their environment daily face many organisms such as fungi, bacteria, mycoplasms, viruses, nematodes, etc. Many of them are potential pathogens; in fact thousands of microorganisms are known to cause plant diseases. Despite this large number of deleterious microorganisms, most of the plants are resistant to their attack since they have developed effective mechanisms to protect themselves.

0106 biological sciences2. Zero hunger0303 health sciences[SDV]Life Sciences [q-bio]MicroorganismfungiDefence mechanismsfood and beverages15. Life on landBiologybiology.organism_classificationArbuscular mycorrhizal fungi01 natural sciences[SDV] Life Sciences [q-bio]03 medical and health sciencesBotanyREPONSE DE LA PLANTEPlant defense against herbivoryComputingMilieux_MISCELLANEOUSBacteria030304 developmental biology010606 plant biology & botany
researchProduct

Editorial: Exploring Plant Rhizosphere, Phyllosphere and Endosphere Microbial Communities to Improve the Management of Polluted Sites

2021

International audience

0106 biological sciences2. Zero hungerMicrobiology (medical)[SDV.EE]Life Sciences [q-bio]/Ecology environmentRhizospherepolluted sitesmicrobial communities04 agricultural and veterinary sciences15. Life on land01 natural sciencesMicrobiologyQR1-502high-throughput sequencing technologiesEditorial13. Climate actionBotany040103 agronomy & agricultureplant growth promoting microorganisms (PGPM)0401 agriculture forestry and fisheriesEnvironmental sciencehighthroughput sequencing technologiesPhyllosphereplant inoculationComputingMilieux_MISCELLANEOUS010606 plant biology & botanyFrontiers in Microbiology
researchProduct

Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

2012

Marine N<sub>2</sub> fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N<sub>2</sub>) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic …

0106 biological sciencesBiogeochemical cyclePHYTOPLANCTON010504 meteorology & atmospheric sciencesPRODUCTION PRIMAIREFONCTIONNEMENT DE L'ECOSYSTEMEBiologycomputer.software_genre01 natural sciencesDeep seaABONDANCEAbundance (ecology)PhytoplanktonEcosystem14. Life underwaterlcsh:Environmental sciences0105 earth and related environmental scienceslcsh:GE1-350Biomass (ecology)BIOMASSEDatabase010604 marine biology & hydrobiologyFIXATION BIOLOGIQUE DE L'AZOTElcsh:QE1-996.5MICROORGANISMEPelagic zoneBASE DE DONNEESlcsh:GeologyOceanography13. Climate action[SDU]Sciences of the Universe [physics]MILIEU MARINNitrogen fixationGeneral Earth and Planetary Sciencescomputer
researchProduct

The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana

2006

Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699; The aim of this study was to evaluate the ability of nonpathogenic F. oxysporum and Trichoderma isolates from suppressive soils in South Africa to suppress fusarium wilt of banana in the glasshouse. Several biological control agents and commercial biological control products were included in the study. The isolates were first screened in vitro on potato dextrose agar. In glasshouse evaluations, the fungal and bacterial isolates were established on banana roots before they were repla…

0106 biological sciencesCUBENSESOIL RHIZOSPHERE[SDV]Life Sciences [q-bio]Biological pest controlPseudomonas fluorescensPlant ScienceHorticultureBiology01 natural sciencesmicroorganisme du sol03 medical and health sciencesFusarium oxysporumBotanyGeneticsFUSARIUM OXYSPORUM F.S.P.030304 developmental biology2. Zero hunger0303 health sciencesCOMMERCIAL BIOLOGICAL CONTROL PRODUCTSSUPPRESSIVE SOILSfood and beveragesTRICHODERMA SPP.Fungi imperfectibiology.organism_classificationFusarium wiltMusaceaePSEUDOMONAS FLUORESCENSHorticultureTrichoderma[SDE]Environmental SciencesPotato dextrose agarAgronomy and Crop Science010606 plant biology & botany
researchProduct

Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.

2007

Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its inc…

0106 biological sciencesChlorophyll[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyFMN ReductasePhysiologyIronArabidopsisReductasePseudomonas fluorescens01 natural sciencesPlant Roots03 medical and health scienceschemistry.chemical_compoundFMN reductaseArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyChelationRELATION PLANTE-MICROORGANISMECation Transport ProteinsEdetic Acid030304 developmental biology0303 health sciencesPyoverdinebiologyArabidopsis ProteinsACLWild typeARABIDOPSIS THALIANAGeneral Medicinebiology.organism_classificationPlants Genetically ModifiedFerritinchemistryBiochemistryChlorophyllFerritinsbiology.proteinAgronomy and Crop ScienceOligopeptides010606 plant biology & botany
researchProduct