Search results for "Microscòpia"
showing 10 items of 32 documents
Fourier-domain lightfield microscopy: a new paradigm in 3D microscopy
2020
Recently, integral (also known as lightfield or plenoptic) imaging concept has been applied successfully to microscopy. The main advantage of lightfield microscopy when compared with conventional 3D imaging techniques is that it offers the possibility of capturing the 3D information of the sample after a single shot. However, integral microscopy is now facing many challenges, like improving the resolution and depth of field of the reconstructed specimens or the development and optimization of specially-adapted reconstruction algorithms. This contribution is devoted to review a new paradigm in lightfield microscopy, namely, the Fourier-domain integral microscope (FiMic), that improves the ca…
Robust Depth Estimation for Light Field Microscopy
2019
Light field technologies have seen a rise in recent years and microscopy is a field where such technology has had a deep impact. The possibility to provide spatial and angular information at the same time and in a single shot brings several advantages and allows for new applications. A common goal in these applications is the calculation of a depth map to reconstruct the three-dimensional geometry of the scene. Many approaches are applicable, but most of them cannot achieve high accuracy because of the nature of such images: biological samples are usually poor in features and do not exhibit sharp colors like natural scene. Due to such conditions, standard approaches result in noisy depth ma…
Handheld and cost-effective Fourier lightfield microscope
2022
In this work, the design, building, and testing of the most portable, easy-to-build, robust, handheld, and cost-effective Fourier Lightfield Microscope (FLMic) to date is reported. The FLMic is built by means of a surveillance camera lens and additional off-the-shelf optical elements, resulting in a cost-effective FLMic exhibiting all the regular sought features in lightfield microscopy, such as refocusing and gathering 3D information of samples by means of a single-shot approach. The proposed FLMic features reduced dimensions and light weight, which, combined with its low cost, turn the presented FLMic into a strong candidate for in-field application where 3D imaging capabilities are pursu…
Diabetes screening by telecentric digital holographic microscopy
2016
Diabetes is currently the world's fastest growing chronic disease and it is caused by deficient production of insulin by the endocrine pancreas or by abnormal insulin action in peripheral tissues. This results in persistent hyperglycaemia that over time may produce chronic diabetic complications. Determination of glycated haemoglobin level is currently the gold standard method to evaluate and control sustained hyperglycaemia in diabetic people. This measurement is currently made by high-performance liquid chromatography, which is a complex chemical process that requires the extraction of blood from the antecubital vein. To reduce the complexity of that measurement, we propose a fully-optica…
Resolution limit in opto-digital systems revisited
2023
The resolution limit achievable with an optical system is a fundamental piece of information when characterizing its performance, mainly in case of microscopy imaging. Usually this information is given in the form of a distance, often expressed in microns, or in the form of a cutoff spatial frequency, often expressed in line pairs per mm. In modern imaging systems, where the final image is collected by pixelated digital cameras, the resolution limit is determined by the performance of both, the optical systems and the digital sensor. Usually, one of these factors is considered to be prevalent over the other for estimating the spatial resolution, leading to the global performance of the imag…
Fast and robust wave optics-based reconstruction protocol for Fourier lightfield microscopy
2023
Fourier lightfield microscopy (FLMic) is a powerful technique to record 3D images of thick dynamic samples. Belonging FLMic to the general class of computational imaging techniques, its efficiency is determined by several factors, like the optical system, the calibration process, the reconstruction algorithm, or the computation architecture. In the case of FLMic the calibration and the reconstruction algorithm should be fully adapted to the singular features of the technique. To this end, and concerning the reconstruction, we discard the use of experimental PSFs, and propose the use of a synthetic one, which is calculated on the basis of paraxial optics and taking into account the equal inf…
Atomically resolved TEM imaging of covalently functionalised graphene
2022
AbstractCovalent functionalisation can be a powerful lever to tune the properties and processability of graphene. After overcoming the low chemical reactivity of graphene, covalent functionalisation led to the generation of new hybrid materials, applicable in a broad variation of fields. Although the process of functionalising graphene is nowadays firmly established, fundamental aspects of the produced hybrid materials remain to be clarified. Especially the atomically resolved imaging is only scarcely explored. Here we show aberration corrected in situ high resolution TEM imaging of dodecyl functionalised monolayer graphene at atomic resolution after an effective mechanical filtering approa…
Color study of historic silks
2022
The chemical characterization of silk textiles of historic value may be necessary to achieve a better understanding of the production processes applied, to evaluate their preservation, to detect manipulations or forgeries, and to value the combination of tradition and innovation in contemporary manufacturing techniques. The main objective of this work was to study four historical silks from the Garín collection, all of them from the 20th century, although with 19th century designs. To this end, non-invasive spectroscopic and microscopy techniques were applied in order to obtain information on the dyes used during their production and their link with those used in the silk industry in previo…
Three-dimensional imaging through patterned type-1 microscopy
2022
We report a scanning non-confocal fluorescence microscopy scheme that provides images with optical sectioning and with a lateral resolution that surpasses by a factor of two the diffraction resolution limit. This technique is based on the type-1 microscopy concept combined with patterned illumination. The method does not require the application of phase-shifting or post-processing algorithms and provides artifact-free superresolved 3D images. We have validated the theory by means of experimental data.
Optimization of Innovative Three-Dimensionally-Structured Hybrid Vesicles to Improve the Cutaneous Delivery of Clotrimazole for the Treatment of Topi…
2019
New three-dimensionally-structured hybrid phospholipid vesicles, able to load clotrimazole in a high amount (10 mg/mL), were obtained for the first time in this work by significantly reducing the amount of water (&le