Search results for "MiniBooNE"
showing 10 items of 49 documents
Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the…
2016
There has been a great deal of theoretical work on sophisticated charged current quasi-elastic (CCQE) neutrino interaction models in recent years, prompted by a number of experimental results that measured unexpectedly large CCQE cross sections on nuclear targets. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2K’s Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2K’s primary neutrino interaction event generator. In this paper, we give an overview of the models implemented and pres…
Searches for Sterile Neutrinos with the IceCube Detector
2016
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…
Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly
2019
While the low-energy excess observed at MiniBooNE remains unchallenged, it has become increasingly difficult to reconcile it with the results from other sterile neutrino searches and cosmology. Recently, it has been shown that non-minimal models with new particles in a hidden sector could provide a better fit to the data. As their main ingredients they require a GeV-scale $Z'$, kinetically mixed with the photon, and an unstable heavy neutrino with a mass in the 150 MeV range that mixes with the light neutrinos. In this letter we point out that atmospheric neutrino experiments (and, in particular, IceCube/DeepCore) could probe a significant fraction of the parameter space of such models by l…
Short distance neutrino oscillations with Borexino
2014
International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two source…
Single photon production induced by (anti)neutrino neutral current scattering on nucleons and nuclear targets
2015
We review our theoretical approach to neutral current photon emission on nucleons and nuclei in the few-GeV energy region, relevant for neutrino oscillation experiments. These reactions are dominated by the weak excitation of the $\Delta(1232)$ resonance but there are also important non-resonant contributions. We have also included terms mediated by nucleon excitations from the second resonance region. On nuclei, Pauli blocking, Fermi motion and the in-medium $\Delta$ resonance broadening have been taken into account for both incoherent and coherent reaction channels. With this model, the number and distributions of photon events at the MiniBooNE and T2K experiments have been obtained. We h…
Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE
2009
The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.
Measurement of the neutrino neutral-current elastic differential cross section on mineral oil atEν∼1 GeV
2010
We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M{sub A} that provides a best fit for M{sub A}=1.39{+-}0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q{sup 2} …
MiniBooNE: first results on the muon-to-electron neutrino oscillation search
2008
MiniBooNE's first results on a search for an electron neutrino excess in a muon neutrino beam are presented, together with an analysis of the data within a two neutrino Vμ → Ve appearance-only oscillation context. MiniBooNE finds excellent agreement between data and Standard Model predictions in the oscillation analysis energy region. If neutrino and antineutrino oscillations are the same, MiniBooNE excludes at ~98% confidence level the two neutrino Vμ → Ve appearance-only oscillation interpretation of the LSND anomaly. MiniBooNE also finds a discrepancy at energies below the oscillation analysis range, which is currently not understood and under investigation.
The minimal 3+2 neutrino model versus oscillation anomalies
2012
We study the constraints imposed by neutrino oscillation experiments on the minimal extension of the Standard Model that can explain neutrino masses, which requires the addition of just two singlet Weyl fermions. The most general renormalizable couplings of this model imply generically four massive neutrino mass eigenstates while one remains massless: it is therefore a minimal 3+2 model. The possibility to account for the confirmed solar, atmospheric and long-baseline oscillations, together with the LSND/MiniBooNE and reactor anomalies is addressed. We find that the minimal model can fit oscillation data including the anomalies better than the standard $3\nu$ model and similarly to the 3+2 …
Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section
2012
We show that because of the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events, and a distortion of the total flux-unfolded cross-section shape is produced. This amounts to a redistribution of strength from high to low energies, which gives rise to a sizable excess (deficit) of low (high) energy neutrinos. This distortion of the shape leads to a good description of the MiniBooNE unfolded charged current quasielastic-like cross sections published by A. A. Aguilar-Arevalo et al. [(MiniBooNE Collaboration), Phys. Rev. D 81, 092005 (2010)]. However, these changes in the shape are artifacts of the unfol…