Search results for "Mink"

showing 10 items of 115 documents

Stability analysis of black holes in massive gravity: a unified treatment

2014

We consider the analytic solutions of massive (bi)gravity which can be written in a simple form using advanced Eddington-Finkelstein coordinates. We analyse the stability of these solutions against radial perturbations. First we recover the previously obtained result on the instability of the bidiagonal bi-Schwarzschild solutions. In the non-bidiagonal case (which contains, in particular, the Schwarzschild solution with Minkowski fiducial metric) we show that generically there are physical spherically symmetric perturbations, but no unstable modes.

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)Kerr metricFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesInstabilityGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmology0103 physical sciencesMinkowski spaceSchwarzschild metric010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Massive gravityClassical mechanicsHigh Energy Physics - Theory (hep-th)Reissner–Nordström metric[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Deriving the Schwarzschild solution[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]
researchProduct

Wilson Loop Form Factors: A New Duality

2017

We find a new duality for form factors of lightlike Wilson loops in planar $\mathcal N=4$ super-Yang-Mills theory. The duality maps a form factor involving an $n$-sided lightlike polygonal super-Wilson loop together with $m$ external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analyti…

High Energy Physics - TheoryNuclear and High Energy PhysicsWilson loopgauge fixingHigh Energy Physics::LatticeFOS: Physical sciencesDuality (optimization)Type (model theory)Superspace01 natural sciencesSuperspacesspace: EuclideanGeneral Relativity and Quantum CosmologyWilson loopQuantum mechanics0103 physical sciencesMinkowski spacelcsh:Nuclear and particle physics. Atomic energy. RadioactivityMinkowskiScattering Amplitudes010306 general physicssuperspaceMathematical physicsGauge fixingPhysicsform factor010308 nuclear & particles physicsEuclidean space[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thAnalytic continuationWilsonLoop (topology)chiralCERN LHC CollHigh Energy Physics - Theory (hep-th)’t Hooft and Polyakov loopslcsh:QC770-798dualitysupersymmetryParticle Physics - TheoryDuality in Gauge Field TheoriesLorentz
researchProduct

Translational anomaly of chiral fermions in two dimensions

2019

It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the space-translation symmetry, which has not been highlighted in the literature so far.

High Energy Physics - TheoryPhysicsMomentumTheoretical physicsSpinorHigh Energy Physics - Theory (hep-th)General covarianceMinkowski spaceFOS: Physical sciencesCovariant transformationTensorAnomaly (physics)Symmetry (physics)Physical Review D
researchProduct

Gravitational waves in the presence of a cosmological constant

2011

We derive the effects of a non-zero cosmological constant $\Lambda$ on gravitational wave propagation in the linearized approximation of general relativity. In this approximation we consider the situation where the metric can be written as $g_{\mu\nu}= \eta_{\mu\nu}+ h_{\mu\nu}^\Lambda + h_{\mu\nu}^W$, $h_{\mu\nu}^{\Lambda,W}<< 1$, where $h_{\mu\nu}^{\Lambda}$ is the background perturbation and $h_{\mu\nu}^{W}$ is a modification interpretable as a gravitational wave. For $\Lambda \neq 0$ this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCosmologiaGravitational waveGeneral relativityPlane waveFísicaFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)LambdaGeneral Relativity and Quantum CosmologyGravitational wavesCosmologySupernovaGeneral Relativity and Quantum CosmologyAmplitudeHigh Energy Physics - Theory (hep-th)Ones gravitacionalsQuantum mechanicsMinkowski space
researchProduct

Space-Time Foam may Violate the Principle of Equivalence

2003

The interactions of different particle species with the foamy space-time fluctuations expected in quantum gravity theories may not be universal, in which case different types of energetic particles may violate Lorentz invariance by varying amounts, violating the equivalence principle. We illustrate this possibility in two different models of space-time foam based on D-particle fluctuations in either flat Minkowski space or a stack of intersecting D-branes. Both models suggest that Lorentz invariance could be violated for energetic particles that do not carry conserved charges, such as photons, whereas charged particles such electrons would propagate in a Lorentz-inavariant way. The D-brane …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsGeneral Relativity and CosmologySpace timeAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsElectronGeneral Relativity and Quantum Cosmology (gr-qc)Lorentz covarianceAstrophysicsGeneral Relativity and Quantum CosmologyAtomic and Molecular Physics and OpticsCharged particleGluonHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Minkowski spaceQuantum gravityPhenomenology (particle physics)
researchProduct

Acceleration radiation and the Planck scale

2008

A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation. We point out that this field-theory effect can be derived, for any dimension higher than two, without actually invoking very high energy physics. This supports the view that this phenomenon is robust against Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsQuantum field theory in curved spacetime010308 nuclear & particles physicsVacuum stateFOS: Physical sciencesAcceleration (differential geometry)RadiationObserver (physics)01 natural sciencesPartícules (Física nuclear)Classical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciencesMinkowski spaceThermalMicroscopic theory010306 general physicsPhysical Review D
researchProduct

Twistor transform inddimensions and a unifying role for twistors

2005

Twistors in four dimensions d=4 have provided a convenient description of massless particles with any spin, and this led to remarkable computational techniques in Yang-Mills field theory. Recently it was shown that the same d=4 twistor provides also a unified description of an assortment of other particle dynamical systems, including special examples of massless or massive particles, relativistic or non-relativistic, interacting or non-interacting, in flat space or curved spaces. In this paper, using 2T-physics as the primary theory, we derive the general twistor transform in d-dimensions that applies to all cases, and show that these more general twistor transforms provide d dimensional ho…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsSpacetimeFOS: Physical sciencesYang–Mills theorySpace (mathematics)ModuliTwistor theoryHigh Energy Physics::TheoryHigh Energy Physics - Theory (hep-th)Phase spaceMinkowski spaceTwistor spaceMathematics::Differential GeometryMathematical physicsPhysical Review D
researchProduct

On the physical contents of q-deformed Minkowski spaces

1994

Some physical aspects of $q$-deformed spacetimes are discussed. It is pointed out that, under certain standard assumptions relating deformation and quantization, the classical limit (Poisson bracket description) of the dynamics is bound to contain unusual features. At the same time, it is argued that the formulation of an associated $q$-deformed field theory is fraught with serious difficulties.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsTheoretical physicsQuantization (physics)Poisson bracketHigh Energy Physics - Theory (hep-th)Minkowski spaceFOS: Physical sciencesClassical limitPhysics Letters B
researchProduct

The Segre embedding of the quantum conformal superspace

2018

In this paper study the quantum deformation of the superflag Fl(2|0, 2|1,4|1), and its big cell, describing the complex conformal and Minkowski superspaces respectively. In particular, we realize their projective embedding via a generalization to the super world of the Segre map and we use it to construct a quantum deformation of the super line bundle realizing this embedding. This strategy allows us to obtain a description of the quantum coordinate superring of the superflag that is then naturally equipped with a coaction of the quantum complex conformal supergroup SL_q(4|1).

High Energy Physics - TheoryPhysicsPure mathematicsQuantum geometryGeneral MathematicsFOS: Physical sciencesGeneral Physics and AstronomyConformal mapMathematical Physics (math-ph)Mathematics - Rings and AlgebrasSuperspaceSegre embeddingHigh Energy Physics - Theory (hep-th)Line bundleRings and Algebras (math.RA)Mathematics - Quantum AlgebraMinkowski spacequantum geometryFOS: MathematicsQuantum Algebra (math.QA)EmbeddingQuantumMathematical Physics
researchProduct

The Minkowski and conformal superspaces

2006

We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.

High Energy Physics - TheoryPure mathematicsFOS: Physical sciencesReal formFísicaStatistical and Nonlinear PhysicsConformal mapLie superalgebraMathematical Physics (math-ph)Mathematics - Rings and AlgebrasSuperspaceHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Rings and Algebras (math.RA)Mathematics::Quantum AlgebraMinkowski spaceSupermanifoldFOS: MathematicsCompactification (mathematics)Mathematics::Representation TheorySupergroupMathematical PhysicsMathematics
researchProduct