Search results for "Molecular Docking Simulation"

showing 10 items of 151 documents

Synthesis, benzodiazepine receptor binding and molecular modelling of isochromeno[4,3-c]pyrazol-5(1H)-one derivatives

2012

Abstract A series of isochromeno[4,3-c]pyrazole-5(1H)-one derivatives 7b–h were prepared and tested at 10 μM for their ability to displace specific [3H]flunitrazepam from bovine brain membranes. The substitution pattern of the above derivatives was shown to influence the receptor affinity. The most active compound of the series was 7e, showing a 54% inhibition of [3H]flunitrazepam binding. Compounds 7a–d,i were compared with the known isomers chromeno[4,3-c]pyrazole-4(1H)-ones 14a–d,i, showing that the isochromene/chromene isomerism influences the activity.

StereochemistryProtein ConformationChemistry Techniques SyntheticIsochromeno[43-c]pirazoles Dihydrospiro[isoindole-13’-pyrazol]-3(2H)- ones Benzodiazepine receptorDrug DiscoverymedicineAnimalsHumansBenzopyransReceptorBenzodiazepine receptor bindingPharmacologyChemistryOrganic ChemistryGeneral MedicineReceptors GABA-ASettore CHIM/08 - Chimica FarmaceuticaMolecular Docking SimulationMembraneBovine brainActive compoundPyrazolesCattleFlunitrazepam bindingFlunitrazepammedicine.drugProtein Binding
researchProduct

A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

2017

AbstractProteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed…

Transcriptional Activation0301 basic medicinenatural productTime FactorsPeroxisome proliferator-activated receptorApoptosisLigandsPartial agonistArticleRosiglitazonePPAR_gammaJurkat Cells03 medical and health sciencesTransactivation0302 clinical medicineproteomicsHumansBinding siteReceptorMode of actionPI3K/AKT/mTOR pathwayCell Proliferationchemistry.chemical_classificationBinding SitesMultidisciplinaryProtein StabilityProtein Proliferator-Activated-Receptor PPARs Ligand-Binding Domain Chemical Proteomics Accurate Docking Pi3k/Akt Pathway Drug Discovery Anticancer compoundsReproducibility of ResultsEstersSurface Plasmon ResonanceMolecular Docking SimulationPPAR gammaKineticsHEK293 Cells030104 developmental biologychemistryBiochemistryDocking (molecular)030220 oncology & carcinogenesisThermodynamicsThiazolidinedionesproteomics PPAR_gamma natural productDiterpenes KauraneHT29 CellsScientific Reports
researchProduct

Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes

2020

International audience; The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroarom…

Transcriptional ActivationAgonistmedicine.drug_classStereochemistryIn silicoCYP1A101 natural sciences03 medical and health scienceschemistry.chemical_compoundTriarylmethaneDrug DiscoverymedicineHumans[CHIM]Chemical SciencesMolecular Targeted TherapyTranscription factor030304 developmental biologyADMEPharmacologyIndole test0303 health sciencesbiology010405 organic chemistryChemistryOrganic ChemistryQuinolineHep G2 CellsGeneral MedicineDruglikenessAryl hydrocarbon receptor3. Good health0104 chemical sciencesMolecular Docking SimulationReceptors Aryl HydrocarbonAh receptorbiology.proteinTranscription factorMethaneAgonistic activityProtein Binding
researchProduct

A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Rec…

2016

Molecular dynamics (MD) simulations can be used, prior to virtual screening, to add flexibility to proteins and study them in a dynamic way. Furthermore, the use of multiple crystal structures of the same protein containing different co-crystallized ligands can help elucidate the role of the ligand on a protein's active conformation, and then explore the most common interactions between small molecules and the receptor. In this work, we evaluated the contribution of the combined use of MD on crystal structures containing the same protein but different ligands to examine the crucial ligand-protein interactions within the complexes. The study was carried out on peroxisome proliferator-activat…

Virtual screening0301 basic medicinePeroxisome proliferator-activated receptorComputational biologyMolecular Dynamics SimulationCrystallography X-RayLigandsPPARα01 natural sciencesBiochemistryDrug design03 medical and health sciencesMolecular dynamics0103 physical sciencesDrug DiscoveryHumansPPAR alphaGeneral Pharmacology Toxicology and PharmaceuticsPharmacologychemistry.chemical_classificationVirtual screeningBinding Sites010304 chemical physicsLigandOrganic ChemistryDynamic pharmacophoreSmall moleculeProtein Structure TertiaryMolecular Docking Simulation030104 developmental biologyROC CurvechemistryDocking (molecular)Area Under CurvePharmacology Toxicology and Pharmaceutics (all)Molecular dockingMolecular MedicinePeroxisome proliferator-activated receptor alphaPharmacophoreProtein BindingChemMedChem
researchProduct

A frozen analogue approach to aminopyridinylimidazoles leading to novel and promising p38 MAP kinase inhibitors.

2012

In this study we report the design, synthesis, and biological evaluation of constrained aminopyridinylimidazoles as p38α MAP kinase inhibitors. The frozen analogue approach focused on the pyridinyl unit, using purine bioisosteres as constrained structure analogues. The identification of the most potent bioisostere was followed by a further derivatization to address hydrophobic region II. In combination with C-2 modifications of the imidazole core, we were able to design highly active inhibitors on the p38α MAP kinase. The inhibitor design presented herein represents a promising and highly efficient advancement of recent stages of development in this class of p38 MAP kinase inhibitors. In co…

biologyChemistryStereochemistryPyridinesp38 mitogen-activated protein kinasesEntropyImidazolesMolecular ConformationCombinatorial chemistryp38 Mitogen-Activated Protein KinasesMolecular conformationMolecular Docking Simulationchemistry.chemical_compoundStructure-Activity RelationshipPurinesMitogen-activated protein kinaseDrug DesignDrug Discoverybiology.proteinMolecular MedicineStructure–activity relationshipBioisostereBiological evaluationJournal of medicinal chemistry
researchProduct

Design, Synthesis and Biological Evaluation of Novel Pyrazolo[1,2,4]triazolopyrimidine Derivatives as Potential Anticancer Agents

2021

Three novel pyrazolo-[4,3-e][1,2,4]triazolopyrimidine derivatives (1, 2, and 3) were designed, synthesized, and evaluated for their in vitro biological activity. All three compounds exhibited different levels of cytotoxicity against cervical and breast cancer cell lines. However, compound 1 showed the best antiproliferative activity against all tested tumor cell lines, including HCC1937 and HeLa cells, which express high levels of wild-type epidermal growth factor receptor (EGFR). Western blot analyses demonstrated that compound 1 inhibited the activation of EGFR, protein kinase B (Akt), and extracellular signal-regulated kinase (Erk)1/2 in breast and cervical cancer cells at concentrations…

cervical cancercrystal X-ray analysisPharmaceutical ScienceAntineoplastic AgentsArticleAnalytical ChemistryHeLa03 medical and health sciencesbreast cancerQD241-4410302 clinical medicineDrug DiscoveryHumansEpidermal growth factor receptorPhysical and Theoretical Chemistrypyrazolo[124]triazolopyrimidineCytotoxicityProtein Kinase InhibitorsProtein kinase BCell Proliferation030304 developmental biologyMitogen-Activated Protein Kinase 1pyrazolo[124]triazolopyrimidine; EGF-receptor inhibitor; breast cancer; cervical cancer; molecular docking; crystal X-ray analysis0303 health sciencesBinding SitesMitogen-Activated Protein Kinase 3biologyChemistryKinaseOrganic ChemistryBiological activitymolecular dockingTriazolesbiology.organism_classificationMolecular biologyIn vitroErbB ReceptorsMolecular Docking SimulationPyrimidinesChemistry (miscellaneous)Docking (molecular)030220 oncology & carcinogenesisbiology.proteinMolecular MedicineProto-Oncogene Proteins c-aktEGF-receptor inhibitorHeLa CellsProtein BindingMolecules
researchProduct

Synthesis and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity.

2019

The synthesis of inhibitors of SphK2 with novel structural scaffolds is reported. These compounds were designed from a molecular modeling study, in which the molecular interactions stabilizing the different complexes were taken into account. Particularly interesting is that 7‐bromo‐2‐(2‐phenylethyl)‐2,3,4,5‐tetrahydro‐1,4‐epoxynaphtho[1,2‐b]azepine, which is a selective inhibitor of SphK2, does not exert any cytotoxic effects and has a potent anti‐inflammatory effect. It was found to inhibit mononuclear cell adhesion to the dysfunctional endothelium with minimal impact on neutrophil–endothelial cell interactions. The information obtained from our theoretical and experimental study can be us…

medicine.drug_classCell SurvivalNeutrophilsFísico-Química Ciencia de los Polímeros ElectroquímicaCellAnti-Inflammatory AgentsPharmaceutical ScienceSYNTHESIS01 natural sciencesPeripheral blood mononuclear cellAnti-inflammatoryANTI-INFLAMMATORY ACTIVITYchemistry.chemical_compoundStructure-Activity RelationshipDrug DiscoverymedicineCell AdhesionHuman Umbilical Vein Endothelial CellsCytotoxic T cellHumansMOLECULAR MODELINGAzepineEnzyme Inhibitors010405 organic chemistryBIOASSAYSCiencias QuímicasSphingosine Kinase 2AdhesionAzepines0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistrySPHK2Phosphotransferases (Alcohol Group Acceptor)medicine.anatomical_structurechemistrySPHINGOSINE KINASE 2 INHIBITORSDrug DesignCancer researchEpoxy CompoundsEndothelium VascularCIENCIAS NATURALES Y EXACTASProtein BindingArchiv der Pharmazie
researchProduct

Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening.

2015

In drug discovery the reliable prediction of binding free energies is of crucial importance. Methods that combine molecular mechanics force fields with continuum solvent models have become popular because of their high accuracy and relatively good computational efficiency. In this research we studied the performance of molecular mechanics generalized Born surface area (MM-GBSA), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), and solvated interaction energy (SIE) both in their virtual screening efficiency and their ability to predict experimentally determined binding affinities for five different protein targets. The protein-ligand complexes were derived with two different app…

molecular mechanics generalized Born surface areaPhosphodiesterase InhibitorsMolecular Dynamics Simulationta3111Molecular mechanicsMolecular Docking Simulationbeta-LactamasesMolecular dynamicssolvated interaction energyBacterial ProteinsComputational chemistryAldehyde ReductaseDrug DiscoveryMaterials ChemistryHumansHSP90 Heat-Shock ProteinsPhysical and Theoretical ChemistryBeta-Lactamase InhibitorsSpectroscopymolecular mechanics Poisson-Boltzmann surface areaMM-GBSAVirtual screeningBinding SitesChemistryPhosphoric Diester Hydrolasesta1182Hydrogen BondingInteraction energyvirtual screeningComputer Graphics and Computer-Aided DesignMolecular Docking SimulationMM-PBSAModels ChemicalROC CurveSolvent modelsDocking (molecular)Area Under CurveBiological systemReceptors Progesteronebeta-Lactamase InhibitorsHydrophobic and Hydrophilic InteractionsProtein BindingJournal of molecular graphicsmodelling
researchProduct

Structure‐ and Interaction‐Based Design of Anti‐SARS‐CoV‐2 Aptamers

2022

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with …

oligonukleotiditaptamers fragment molecular orbitals method molecular dynamics SARS-CoV-2 SAXSfragment molecular orbitals methodSARS-CoV-2SELEX Aptamer TechniqueOrganic ChemistryaptamersSARS-CoV-2-virusCOVID-19SAXSGeneral ChemistryAptamers NucleotideMolecular Dynamics Simulationlaskennallinen kemiamolecular dynamicsCatalysislääkesuunnitteluMolecular Docking SimulationSARS-CoV-2 белкиSpike Glycoprotein CoronavirusHumansдизайн аптамеровmolekyylidynamiikkaproteiinitChemistry – A European Journal
researchProduct

Synthesis and Molecular Modeling Studies of Derivatives of a Highly Potent Peptidomimetic Vinyl Ester as Falcipain-2 Inhibitors

2012

Herein we report the synthesis of a set of constrained peptidomimetics endowed with an electrophilic vinyl ester warhead and structurally related to a previously identified lead compound, a potent and irreversible inhibitor of falcipain-2 (FP-2). FP-2 is the main hemoglobinase of the malaria parasite P. falciparum. The new compounds were evaluated for their inhibition against FP-2, and the results were rationalized on the basis of docking experiments. These studies underscore the pivotal role of both the ester function at the P1' site and the trifluoromethyl group of the P3 side chain in determining the correct orientation of the Michael acceptor warhead in the catalytic site, and as a cons…

peptidomimeticdMolecular modelPeptidomimeticStereochemistryPlasmodium falciparumVinyl esterBiochemistrycysteine proteasesfalcipain-2 inhibitorsAntimalarialschemistry.chemical_compoundCatalytic DomainDrug DiscoverySide chainHumansEnzyme InhibitorsMalaria FalciparumGeneral Pharmacology Toxicology and PharmaceuticsPharmacologyTrifluoromethylOrganic Chemistrydocking studiescysteine proteases; peptidomimeticd; docking studies; falcipain-2 inhibitorsMolecular Docking SimulationCysteine EndopeptidaseschemistryDocking (molecular)Michael reactionMolecular MedicinePeptidomimeticsLead compoundChemMedChem
researchProduct