Search results for "Molecular electronics"
showing 10 items of 59 documents
Metallosupramolecular approach toward multifunctional magnetic devices for molecular spintronics
2015
Abstract The work presented in this review constitutes a successful extension of our group's research on the chemistry and physics of dinuclear copper(II) metallacyclophanes with aromatic polyoxalamide ligands. The design and synthesis of metallacyclic complexes that contain multiple electro- and photoactive (either metal- or ligand-based) spin carriers and the study of their spectroscopic and magnetic properties as well as their redox and photochemical activity are of large interest in the multidisciplinary field of metallosupramolecular chemistry. In doing this, a ligand design approach has been followed which is based on the copper(II)-mediated self-assembly of bis(oxamato) bridging liga…
Molecular vs. inorganic spintronics: The role of molecular materials and single molecules
2009
Molecular spintronics is a new and emerging sub-area of spintronics that can benefit from the achievements obtained in molecular electronics and molecular magnetism. The two major trends of this area are the design of molecular analogs of the inorganic spintronic structures, and the evolution towards single-molecule spintronics. The former trend opens the possibility to design cheaper spintronic devices compatible with plastic technology, while the second takes advantage of the possibility to tailor molecules with control down to the single spin. In this highlight these two trends will be compared with the state-of-the-art achieved in the conventional inorganic spintronic systems.
Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties.
2011
We present a novel, defined-size, small and rigid DNA template, a so-called B-A-B complex, based on DNA triple crossover motifs (TX tiles), which can be utilized in molecular scale patterning for nanoelectronics, plasmonics and sensing applications. The feasibility of the designed construct is demonstrated by functionalizing the TX tiles with one biotin-triethylene glycol (TEG) and efficiently decorating them with streptavidin, and furthermore by positioning and anchoring single thiol-modified B-A-B complexes to certain locations on a chip via dielectrophoretic trapping. Finally, we characterize the conductance properties of the non-functionalized construct, first by measuring DC conductivi…
Multifuctionality in Molecular Conductors and Magnets
2004
Building multifuntionality in a material is a hot focus of research in contemporary materials science. Molecule-based materials offer unique opportunities in this context since the versatility of molecular chemistry provides the possibility to design materials that combine in the same crystal lattice two or more solid-state properties such as ferromagnetism, conductivity, superconductivity or non-linear optics. This opens new possibilities for potential applications in molecular electronics. A possible approach to reach this goal consists of building up hybrid solids formed by two molecular networks, such as anion/cation salts or host/guest solids, where each network furnishes distinct prop…
Push‐Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light‐Emitting Electrochemical Cells
2013
Light-emitting electrochemical cells (LECs) with a simple device structure were prepared by using heteroleptic bis(tridentate) ruthenium(II) complexes [1](PF6)(2)-[3](PF6)(2) as emitters. The push-pull substitution shifts the emission energy to low energy, into the NIR region. The devices emit deep red light up to a maximum emission wavelength of 755 nm [CIE (International Commission on Illumination) coordinates: x = 0.731, y = 0.269 for [3](PF6)(2)], which, to the best of our knowledge, is the lowest emission energy for LECs containing bis(tridentate) ruthenium(II) complexes. A device structure of ITO/PEDOT:PSS/ruthenium(II) complex/Ag was used, and the thickness of the emitting layer was …
Introduction to Self-Assembled Monolayers
2015
One of the most exciting targets of molecular spintronics field is to go towards multifunctional devices where the properties can be accurately controlled and actively changed. Spin dependent hybridization at the metal/molecule interface could thus be used in the tailoring of the resistive and magnetoresistive response of spintronic devices exploiting chemistry versatility. In this new direction, Self-Assembled Monolayers (SAMs) appear as highly promising candidates since each part and function of this system can be modulated independently (like a molecular LEGO building unit). Despite highly promising, they are still scarcely investigated in the literature probably due to the difficulties …
An Atom-Economical Approach to Functionalized Single-Walled Carbon Nanotubes: Reaction with Disulfides
2013
Owing to their unique structure, thermal stability, and mechanical and electronic properties, single-walled carbon nanotubes (SWCNTs) have been a subject of continuous and intense interest. However, various applications in many fields, such as molecular electronics, solar cells, and nanomedicine, often require the development of reproducible protocols for the chemical modification of SWCNTs. In fact, one of the main drawbacks of the use of SWCNTs is their tendency to aggregate and intrinsic poor solubility, which prevent their manipulation and limit their potential. To date, several methods have been described for the chemical functionalization of SWCNTs; however, new versatile and reliable…
Chemical design of coordination polymers and functional materials: from pore control in MOFs through spin dynamics in nanomagnets to rotaxanes in mol…
2022
El trabajo de esta tesis se enmarca en el diseño químico de polímeros de coordinación y de materiales funcionales para poder ser utilizados en el campo de los materiales moleculares. El capítulo 1 ofrece una visión de los avances más significativos en la química de coordinación, así como una introducción general de los materiales moleculares más relevantes en la actualidad. El objetivo es proporcionar al lector el conocimiento necesario para establecer las bases sobre los campos a tratar. El resto de capítulos está organizado de acuerdo con un aumento de la dimensionalidad, empezando con moléculas discretas y terminando con polímeros de coordinación. El capítulo dos describe dos estructuras…
Diamondoids: functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons
2014
The term “diamondoid” describes cage hydrocarbon molecules that are superimposable on the diamond lattice. Diamondoids that are formally built by face-fusing of adamantane units, namely diamantane, triamantane, tetramantane, etc., have fascinated chemists since the beginning of the last century. The functionalization of these perfectly defined (C,H)-molecules is described here. Thus, diamondoid halides and diamondoid alcohols are first rank precursors for amino and phosphine-substituted diamondoids that have proved to be highly useful in therapeutic applications and metal catalysis, respectively. The extent of functionalization and polyfunctionalization achieved for adamantane and diamantan…
Supramolecular coordination chemistry of aromatic polyoxalamide ligands: A metallosupramolecular approach toward functional magnetic materials
2010
Abstract The impressive potential of the metallosupramolecular approach in designing new functional magnetic materials constitutes a great scientific challenge for the chemical research community that requires an interdisciplinary collaboration. New fundamental concepts and future applications in nanoscience and nanotechnology will emerge from the study of magnetism as a supramolecular function in metallosupramolecular chemistry. Our recent work on the rich supramolecular coordination chemistry of a novel family of aromatic polyoxalamide (APOXA) ligands with first-row transition metal ions has allowed us to move one step further in the rational design of metallosupramolecular assemblies of …