Search results for "Molecular structure"

showing 10 items of 1246 documents

The New Structure of Core Oligosaccharide Presented by Proteus penneri 40A and 41 Lipopolysaccharides

2018

The new type of core oligosaccharide in Proteus penneri 40A and 41 lipopolysaccharides has been investigated by 1H and 13C NMR spectroscopy, electrospray ionization mass spectrometry and chemical methods. Core oligosaccharides of both strains were chosen for structural analysis based on the reactivity of LPSs with serum against P. penneri 40A core oligosaccharide–diphtheria toxoid conjugate. Structural analyses revealed that P. penneri 40A and 41 LPSs possess an identical core oligosaccharide.

0301 basic medicineLipopolysaccharidesSpectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyStereochemistryElectrospray ionizationOligosaccharidesanti-conjugate serum; core oligosaccharide; lipopolysaccharide; NMR spectroscopy; ESI MS; <i>Proteus penneri</i>Immune seraProteus penneriCatalysisArticleInorganic Chemistrycore oligosaccharidelcsh:Chemistry03 medical and health sciencesStructure-Activity Relationship13c nmr spectroscopyNMR spectroscopyMoleculePhysical and Theoretical ChemistryESI MSMolecular Biologylcsh:QH301-705.5SpectroscopyAntigens Bacterial030102 biochemistry & molecular biologybiologyMolecular StructureChemistryCore oligosaccharideImmune Seraanti-conjugate serumOrganic ChemistrylipopolysaccharideGeneral MedicineNuclear magnetic resonance spectroscopybiology.organism_classificationProteus penneriComputer Science Applicationslcsh:Biology (General)lcsh:QD1-999ConjugateInternational Journal of Molecular Sciences
researchProduct

Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor

2017

International audience; In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.). The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC) using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a (13)C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2), leachianol F (4) and G (4'), four stilbenes (resveratrol (1), ε-viniferin (5), pallidol (3) and a newly characterized…

0301 basic medicineMagnetic Resonance SpectroscopyDimerEthyl acetatePharmaceutical ScienceresveratrolResveratrolAnalytical Chemistrybioreactorchemistry.chemical_compoundBioreactors0302 clinical medicineStilbenesDrug DiscoveryVitisphytostilbenesMolecular Structure[CHIM.ORGA]Chemical Sciences/Organic chemistryBiological activity3. Good healthanticancer activityBiochemistryBatch Cell Culture TechniquesChemistry (miscellaneous)030220 oncology & carcinogenesisMolecular MedicineVitis labruscaCell SurvivalArticlePallidollcsh:QD241-44103 medical and health scienceslcsh:Organic chemistry[ CHIM.ORGA ] Chemical Sciences/Organic chemistryCell Line TumorPlant Cellsfibroblasts[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymelanomaHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyPhysical and Theoretical ChemistryCell growthresveratrol; phytostilbenes; melanoma; fibroblasts; anticancer activity; bioreactor; Vitis labruscaOrganic Chemistry[CHIM.ORGA] Chemical Sciences/Organic chemistryAntineoplastic Agents Phytogenic030104 developmental biologychemistryCell cultureFetal bovine serumChromatography LiquidMolecules
researchProduct

Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144

2017

IF 2.861; International audience; A new resveratrol dimer (1) called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) analyses including ¹H, 13C, heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and correlation spectroscopy (COSY) as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS) were used to characterize this compound and to unambiguously identify it as a new st…

0301 basic medicineMagnetic Resonance SpectroscopySkin NeoplasmsCellPharmaceutical ScienceApoptosisResveratrolresveratrol[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAnalytical Chemistry[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundbioreactor0302 clinical medicineBioreactorsDrug DiscoveryStilbenesVitisCytotoxicitylabruscolMolecular StructureChemistryCommunicationVitis labrusca L.Biological activity3. Good healthmedicine.anatomical_structureBiochemistryChemistry (miscellaneous)030220 oncology & carcinogenesisMolecular MedicineDimerizationCell Survivallcsh:QD241-44103 medical and health scienceslcsh:Organic chemistryCell Line TumorPlant CellsfibroblastsmedicinemelanomaHumansViability assayPhysical and Theoretical Chemistrycytotoxic activityOrganic Chemistry[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAntineoplastic Agents Phytogenic030104 developmental biologyApoptosisCell cultureFetal bovine serum
researchProduct

Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

2018

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei (T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors (Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys–SOH) during crystallization. The P-glycoprotein efflux ratio was mea…

0301 basic medicineMaleTrypanosoma brucei rhodesienseSwineCathepsin LLactams MacrocyclicTrypanosoma bruceiCysteine Proteinase InhibitorsLigands01 natural sciencesCell LineCathepsin L03 medical and health sciencesStructure-Activity RelationshipIn vivoparasitic diseasesDrug DiscoveryHydrolaseAnimalsHumansIC50Binding SitesbiologyMolecular Structure010405 organic chemistryChemistryDrug RepositioningTrypanosoma brucei rhodesiensebiology.organism_classificationCysteine proteaseMolecular biologyTrypanocidal Agents0104 chemical sciencesRatsMice Inbred C57BLCysteine Endopeptidases030104 developmental biologyBlood-Brain Barrierbiology.proteinMolecular MedicineEffluxJournal of medicinal chemistry
researchProduct

Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs.

2018

Nonsense mutations in the CFTR gene prematurely terminate translation of the CFTR mRNA leading to the production of a truncated protein that lacks normal function causing a more severe form of the cystic fibrosis (CF) disease. About 10% of patients affected by CF show a nonsense mutation. A potential treatment of this alteration is to promote translational readthrough of premature termination codons (PTCs) by Translational Readthrough Inducing Drugs (TRIDs) such as PTC124. In this context we aimed to compare the activity of PTC124 with analogues differing in the heteroatoms position in the central heterocyclic core. By a validated protocol consisting of computational screening, synthesis an…

0301 basic medicineModels MolecularCell SurvivalNonsense mutationCystic Fibrosis Transmembrane Conductance RegulatorSettore BIO/11 - Biologia MolecolareContext (language use)OxadiazoleSettore BIO/09 - FisiologiaCystic fibrosis03 medical and health sciencesStructure-Activity Relationship0302 clinical medicineDrug DiscoverymedicineHumansRNA MessengerGenetic disorderPharmacologyMessenger RNAOxadiazolesNonsense mutationDose-Response Relationship DrugMolecular StructureChemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryTranslational readthroughPremature termination codonTranslation (biology)Settore CHIM/06 - Chimica OrganicaGeneral Medicinemedicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeCell biologySettore BIO/18 - Genetica030104 developmental biologyBiological targetCystic fibrosi030220 oncology & carcinogenesisHeLa CellsEuropean journal of medicinal chemistry
researchProduct

Evolving Notch polyQ tracts reveal possible solenoid interference elements.

2016

ABSTRACTPolyglutamine (polyQ) tracts in regulatory proteins are extremely polymorphic. As functional elements under selection for length, triplet repeats are prone to DNA replication slippage and indel mutations. Many polyQ tracts are also embedded within intrinsically disordered domains, which are less constrained, fast evolving, and difficult to characterize. To identify structural principles underlying polyQ tracts in disordered regulatory domains, here I analyze deep evolution of metazoan Notch polyQ tracts, which can generate alleles causing developmental and neurogenic defects. I show that Notch features polyQ tract turnover that is restricted to a discrete number of conserved “polyQ …

0301 basic medicineModels MolecularProtein Structure ComparisonProtein FoldingHuntingtinlcsh:MedicineCarboxamideAnkyrin Repeat DomainBiochemistryProtein Structure SecondaryDatabase and Informatics Methods0302 clinical medicineProtein structureMacromolecular Structure AnalysisDrosophila Proteinslcsh:ScienceGeneticsHuntingtin ProteinMultidisciplinaryReceptors NotchChemistryDrosophila MelanogasterAnimal ModelsCell biologyInsectsExperimental Organism SystemsProtein foldingDrosophilaSequence AnalysisResearch ArticleMultiple Alignment CalculationProtein StructureArthropodamedicine.drug_classBioinformaticsProtein domainSequence alignmentBiologyIntrinsically disordered proteinsResearch and Analysis MethodsTerminal loopEvolution Molecular03 medical and health sciencesModel OrganismsProtein DomainsSequence Motif AnalysisComputational TechniquesmedicineHuntingtin ProteinAnimalsIndelMolecular BiologyRepetitive Sequences Nucleic AcidModels GeneticSequence Homology Amino Acidlcsh:RDNA replicationOrganismsBiology and Life SciencesProteinsHydrogen BondingInvertebratesSplit-Decomposition MethodIntrinsically Disordered Proteins030104 developmental biologyAnkyrin repeatlcsh:QPeptidesSequence Alignment030217 neurology & neurosurgeryPLoS ONE
researchProduct

Investigation on Quantitative Structure-Activity Relationships of 1,3,4-Oxadiazole Derivatives as Potential Telomerase Inhibitors.

2020

Background:Telomerase, a reverse transcriptase, maintains telomere and chromosomes integrity of dividing cells, while it is inactivated in most somatic cells. In tumor cells, telomerase is highly activated, and works in order to maintain the length of telomeres causing immortality, hence it could be considered as a potential marker to tumorigenesis.A series of 1,3,4-oxadiazole derivatives showed significant broad-spectrum anticancer activity against different cell lines, and demonstrated telomerase inhibition.Methods:This series of 24 N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-oxadiazol-2yl)thio)acetohydrazide derivatives as telomerase inhibitors has been considered to carry out QSAR studies…

0301 basic medicineModels MolecularTelomeraseQuantitative structure–activity relationship2D descriptorsDatasets as TopicQuantitative Structure-Activity RelationshipAntineoplastic Agents010402 general chemistry01 natural sciencesModels BiologicalAnticancer activityMLR03 medical and health sciencesInhibitory Concentration 50Drug DiscoveryLeast-Squares AnalysisTelomerase134-oxadiazolesOxadiazolesMolecular StructureDrug discoveryChemistryQSARQuantitative structureCombinatorial chemistry0104 chemical sciencesTelomerase inhibitors030104 developmental biology1 3 4 oxadiazole derivativesDrug Screening Assays AntitumorCurrent drug discovery technologies
researchProduct

In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models

2016

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…

0301 basic medicineMolecular biologyPhysiologyMutantMyotonic dystrophyDruggabilitylcsh:Medicine01 natural sciencesBiochemistryPhysical ChemistryMyoblastschemistry.chemical_compoundAnabolic AgentsMedicaments--InteraccióAnimal CellsDrug DiscoveryMedicine and Health SciencesMBNL1Drosophila ProteinsMyotonic Dystrophylcsh:ScienceRNA structureConnective Tissue CellsMultidisciplinaryMolecular StructureOrganic CompoundsStem CellsPhysicsRNA-Binding ProteinsBiological activityPhenotypeClimbingMolecular Docking SimulationNucleic acidsChemistryDrosophila melanogasterBiochemistryGenetic DiseasesConnective TissueRNA splicingPhysical SciencesCellular TypesAnatomyLocomotion57 - BiologiaSignal TransductionResearch ArticleBiotechnologyHydrogen bondingcongenital hereditary and neonatal diseases and abnormalitiesIn silicoPrimary Cell CultureComputational biologyBiology010402 general chemistryMyotonic dystrophyMyotonin-Protein KinaseDrug interactionsSmall Molecule Libraries03 medical and health sciencesStructure-Activity RelationshipmedicineAnimalsHumansRNA MessengerEnllaços d'hidrogenClinical GeneticsChemical PhysicsBiology and life sciencesChemical BondingBiological Locomotionlcsh:ROrganic ChemistryEstructura molecularChemical CompoundsHydrogen BondingCell BiologyFibroblastsmedicine.disease0104 chemical sciencesBenzamidinesAlternative SplicingDisease Models AnimalMacromolecular structure analysis030104 developmental biologyPyrimidinesBiological TissuechemistrySmall MoleculesRNAlcsh:QTrinucleotide Repeat ExpansionMolecular structure
researchProduct

Oleanane-type glycosides from the roots of Weigela florida “rumba” and evaluation of their antibody recognition

2018

Three triterpene glycosides were isolated from the roots of Weigela florida "rumba" (Bunge) A. DC.: two previously undescribed 3-O-β-d-xylopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→4)]-β-d-xylopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyloleanolic acid (1) and 3-O-β-d-xylopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-xylopyranosyl-(1→4)-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid (2), and one isolated for the first time from a natural source 3-O-β-d-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyloleanolic acid (3). Their structures were elucidated mainly by 2D NMR spectroscopic analysis (COSY, …

0301 basic medicineMultiple SclerosisStereochemistryEnzyme-Linked Immunosorbent AssayCaprifoliaceaePlant Roots01 natural sciences03 medical and health scienceschemistry.chemical_compoundTriterpeneDrug DiscoveryHumansGlycosidesOleanolic AcidCaprifoliaceaeOleanolic acidOleananePharmacologychemistry.chemical_classificationMolecular Structurebiology010405 organic chemistryGlycosideGeneral Medicinebiology.organism_classification0104 chemical sciences030104 developmental biologyImmunoglobulin MchemistryImmunoglobulin Mbiology.proteinAntibodyTwo-dimensional nuclear magnetic resonance spectroscopyFitoterapia
researchProduct

Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ)

2017

Peroxisome proliferator-activated receptors (PPARs) play an important role in numerous chronic diseases such as diabetes, obesity, atherosclerosis and cancer, and PPAR modulators are among the approved drugs and drug-candidates for their treatment. The aim of this study was to elucidate the involvement of PPARs in the mechanism of cytotoxic and pro-apoptotic action of novel anticancer 4-thiazolidinone derivatives (Les-2194, Les-3377, Les-3640) and approved 4-thiazolidinones (Rosiglitazone, Pioglitazone) towards the human squamous carcinoma (SCC-15) cell line. Experiments with 4-thiazaolidinone derivatives and PPAR-specific siRNA were conducted and PPARα, PPARβ and PPARγ mRNA expression was …

0301 basic medicinePPARsCytotoxicityPeroxisome proliferator-activated receptorAntineoplastic AgentsApoptosisPharmacologySCC-1503 medical and health sciencesStructure-Activity Relationship0302 clinical medicineCell Line TumorDrug DiscoverymedicineGene silencingHumansViability assayRNA MessengerReceptorCell ProliferationPharmacologychemistry.chemical_classificationGene knockdownDose-Response Relationship DrugMolecular StructureThiazolothiopyranesOrganic ChemistryGeneral MedicineSquamous carcinomaPPAR gamma030104 developmental biologychemistryCell cultureThiazolidinone030220 oncology & carcinogenesisThiazolidinesDrug Screening Assays AntitumorRosiglitazonemedicine.drugEuropean Journal of Medicinal Chemistry
researchProduct