Search results for "Monotone polygon"

showing 10 items of 44 documents

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct

Extremal solutions and strong relaxation for nonlinear multivalued systems with maximal monotone terms

2018

Abstract We consider differential systems in R N driven by a nonlinear nonhomogeneous second order differential operator, a maximal monotone term and a multivalued perturbation F ( t , u , u ′ ) . For periodic systems we prove the existence of extremal trajectories, that is solutions of the system in which F ( t , u , u ′ ) is replaced by ext F ( t , u , u ′ ) (= the extreme points of F ( t , u , u ′ ) ). For Dirichlet systems we show that the extremal trajectories approximate the solutions of the “convex” problem in the C 1 ( T , R N ) -norm (strong relaxation).

Differential inclusionPure mathematicsApplied Mathematics010102 general mathematicsRegular polygonMaximal monotone mapAnalysiPerturbation (astronomy)Bang-bang controlExtremal trajectorieDifferential operator01 natural sciencesDirichlet distribution010101 applied mathematicsNonlinear systemsymbols.namesakeMonotone polygonSettore MAT/05 - Analisi MatematicaNorm (mathematics)symbols0101 mathematicsExtreme pointStrong relaxationAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

On positive P

2002

Continuing a line of research opened up by Grigni and Sipser (1992) and further pursued by Stewart (1994), we show that a wide variety of equivalent characterizations of P still remain equivalent when restricted to be positive. All these restrictions thus define the same class posP, a proper subclass of monP, the class of monotone problems in P. We also exhibit complete problems for posP under very weak reductions.

Discrete mathematicsCombinatoricsClass (set theory)Monotone polygonBoolean circuitComplexity classVariety (universal algebra)Boolean functionTime complexitySubclassMathematicsProceedings of Computational Complexity (Formerly Structure in Complexity Theory)
researchProduct

Monotone Relations, Fixed Points and Recursive Definitions

2008

The paper is concerned with reflexive points of relations. The significance of reflexive points in the context of indeterminate recursion principles is shown.

Discrete mathematicsMathematics::Functional AnalysisMonotone polygonRecursionReflexivityContext (language use)Fixed pointIndeterminateMathematics
researchProduct

On computing the degree of convexity of polyominoes

2015

In this paper we present an algorithm which has as input a convex polyomino $P$ and computes its degree of convexity, defined as the smallest integer $k$ such that any two cells of $P$ can be joined by a monotone path inside $P$ with at most $k$ changes of direction. The algorithm uses space $O(m + n)$ to represent a polyomino $P$ with $n$ rows and $m$ columns, and has a running time $O(min(m; r k))$, where $r$ is the number of corners of $P$. Moreover, the algorithm leads naturally to a decomposition of $P$ into simpler polyominoes.

Discrete mathematicsPolyominoDegree (graph theory)Settore INF/01 - InformaticaApplied MathematicsRegular polygonConvexityTheoretical Computer ScienceCombinatoricsMonotone polygonIntegerComputational Theory and MathematicsPath (graph theory)Discrete Mathematics and CombinatoricsGeometry and TopologyRowMathematics
researchProduct

MAST solution of advection problems in irrotational flow fields

2007

Abstract A new numerical–analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the so…

Eulerian methods convective flow computational methodsComputer scienceAdvectionNumerical analysisCourant–Friedrichs–Lewy conditionOdeScalar potentialEulerian pathConservative vector fieldsymbols.namesakeMonotone polygonCalculussymbolsApplied mathematicsWater Science and Technology
researchProduct

On the exhaustive generation of k-convex polyominoes

2017

The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.

General Computer SciencePolyomino0102 computer and information sciences02 engineering and technologyComputer Science::Computational Geometry01 natural sciencesConvexityTheoretical Computer ScienceCombinatoricsCAT algorithmIntegerExhaustive generation0202 electrical engineering electronic engineering information engineeringConvex polyominoeConvexity K-convex polyominoes.Convex polyominoesComputer Science::DatabasesMathematicsDiscrete mathematicsAmortized analysisMathematics::CombinatoricsDegree (graph theory)Settore INF/01 - InformaticaComputer Science (all)Regular polygonMonotone polygon010201 computation theory & mathematicsPath (graph theory)020201 artificial intelligence & image processingCAT algorithms; Convex polyominoes; Exhaustive generation;CAT algorithms
researchProduct

A combinatorial view on string attractors

2021

Abstract The notion of string attractor has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word w = w 1 w 2 ⋯ w n is a subset Γ of the positions { 1 , … , n } , such that all distinct factors of w have an occurrence crossing at least one of the elements of Γ. In this paper we explore the notion of string attractor by focusing on its combinatorial properties. In particular, we show how the size of the smallest string attractor of a word varies when combinatorial operations are applied and we deduce that such a measure is not monotone. Moreover, we introduce a c…

General Computer ScienceSettore INF/01 - InformaticaString (computer science)de Bruijn word0102 computer and information sciences02 engineering and technologyCharacterization (mathematics)Burrows-Wheeler transform01 natural sciencesMeasure (mathematics)Standard Sturmian wordTheoretical Computer ScienceCombinatoricsConjugacy classMonotone polygonString attractor010201 computation theory & mathematicsAttractorThue-Morse word0202 electrical engineering electronic engineering information engineeringLempel-Ziv encoding020201 artificial intelligence & image processingWord (group theory)Mathematics
researchProduct

A fixed point theorem for G-monotone multivalued mapping with application to nonlinear integral equations

2017

We extend notion and theorem of [21] to the case of a multivalued mapping defined on a metric space endowed with a finite number of graphs. We also construct an example to show the generality of our result over existing results. Finally, we give an application to nonlinear integral equations

GeneralityGeneral Mathematics010102 general mathematicsFixed-point theoremFixed pointConstruct (python library)Nonlinear integral equation01 natural sciencesGraph010101 applied mathematicsAlgebraMetric spaceMonotone polygonSettore MAT/05 - Analisi Matematica0101 mathematicsG-monotone multivalued mappingFinite setMathematicsFilomat
researchProduct

Third-order accurate monotone cubic Hermite interpolants

2019

Abstract Monotonicity-preserving interpolants are used in several applications as engineering or computer aided design. In last years some new techniques have been developed. In particular, in Arandiga (2013) some new methods to design monotone cubic Hermite interpolants for uniform and non-uniform grids are presented and analyzed. They consist on calculating the derivative values introducing the weighted harmonic mean and a non-linear variation. With these changes, the methods obtained are third-order accurate, except in extreme situations. In this paper, a new general mean is used and a third-order interpolant for all cases is gained. We perform several experiments comparing the known tec…

Hermite polynomialsApplied MathematicsHarmonic meanDerivativeFunction (mathematics)computer.software_genreThird orderMonotone polygonComputer Aided DesignApplied mathematicsMATLABcomputercomputer.programming_languageMathematicsApplied Mathematics Letters
researchProduct