Search results for "Monotonic function"

showing 10 items of 87 documents

A Quasilinear Parabolic Equation with Quadratic Growth of the Gradient modeling Incomplete Financial Markets

2004

We consider a quasilinear parabolic equation with quadratic gradient terms. It arises in the modeling of an optimal portfolio which maximizes the expected utility from terminal wealth in incomplete markets consisting of risky assets and non-tradable state variables. The existence of solutions is shown by extending the monotonicity method of Frehse. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution. The in influence of the non-tradable state variables on the optimal value function is illustrated by a numerical example.

Quadratic growthState variableQuadratic equationIncomplete marketsBellman equationMathematical analysisMonotonic functionUniquenessCovarianceQuasilinear PDE quadratic gradient existence and uniqueness of solutions optimal portfolio incomplete marketMathematicsSSRN Electronic Journal
researchProduct

MAST solution of irrotational flow problems in 2D domains with strongly unstructured triangular meshes

2010

A new methodology for the solution of irrotational 2D flow problems in domains with strongly unstructured meshes is presented. A fractional time step procedure is applied to the original governing equations, solving consecutively a convective prediction system and a diffusive corrective system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system, of the order of the number of computational cells. A MArching in Space and Time (MAST) approach is applied for the solution of the convective prediction step. The major advantages of the model, as well as its ability to maintain the solution monotonicit…

Shallow water numerical models MASTConvectionNonlinear systemSpacetimeLinear systemApplied mathematicsMonotonic functionPolygon meshGeometryConservative vector fieldShallow water equationsSettore ICAR/01 - IdraulicaMathematicsAIP Conference Proceedings
researchProduct

Mappings of finite distortion: Monotonicity and continuity

2001

We study mappings f = ( f1, ..., fn) : Ω → Rn in the Sobolev space W loc (Ω,R n), where Ω is a connected, open subset of Rn with n ≥ 2. Thus, for almost every x ∈ Ω, we can speak of the linear transformation D f(x) : Rn → Rn, called differential of f at x. Its norm is defined by |D f(x)| = sup{|D f(x)h| : h ∈ Sn−1}. We shall often identify D f(x) with its matrix, and denote by J(x, f ) = det D f(x) the Jacobian determinant. Thus, using the language of differential forms, we can write

Sobolev spaceDiscrete mathematicsLinear mapsymbols.namesakeDifferential formGeneral MathematicsNorm (mathematics)Jacobian matrix and determinantsymbolsMonotonic functionMathematicsInventiones Mathematicae
researchProduct

Dynamics and spectra of composition operators on the Schwartz space

2017

[EN] In this paper we study the dynamics of the composition operators defined in the Schwartz space of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol ¿ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when ¿ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.

Space of rapidly decreasing functionsMathematics::Functional AnalysisPure mathematicsComposition operator010102 general mathematicsSpectrum (functional analysis)Power bounded operatorMonotonic functionFixed pointMean ergodic composition operator01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsOperator (computer programming)Schwartz spaceBounded functionSpectrumFOS: MathematicsErgodic theory0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Strengthened splitting methods for computing resolvents

2021

In this work, we develop a systematic framework for computing the resolvent of the sum of two or more monotone operators which only activates each operator in the sum individually. The key tool in the development of this framework is the notion of the “strengthening” of a set-valued operator, which can be viewed as a type of regularisation that preserves computational tractability. After deriving a number of iterative schemes through this framework, we demonstrate their application to best approximation problems, image denoising and elliptic PDEs. FJAA and RC were partially supported by the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund …

Splitting algorithmControl and Optimization0211 other engineering and technologies47H05 90C30 65K05Elliptic pdesMonotonic function02 engineering and technology01 natural sciencesMonotone operatorOperator (computer programming)Development (topology)Estadística e Investigación OperativaFOS: Mathematics0101 mathematicsImage denoisingResolventMathematics - Optimization and ControlMathematicsResolvent021103 operations researchApplied Mathematics010102 general mathematicsAlgebraComputational MathematicsMonotone polygonOptimization and Control (math.OC)StrengtheningKey (cryptography)Computational Optimization and Applications
researchProduct

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Latin hypercube sampling with inequality constraints

2010

International audience; In some studies requiring predictive and CPU-time consuming numerical models, the sampling design of the model input variables has to be chosen with caution. For this purpose, Latin hypercube sampling has a long history and has shown its robustness capabilities. In this paper we propose and discuss a new algorithm to build a Latin hypercube sample (LHS) taking into account inequality constraints between the sampled variables. This technique, called constrained Latin hypercube sampling (cLHS), consists in doing permutations on an initial LHS to honor the desired monotonic constraints. The relevance of this approach is shown on a real example concerning the numerical w…

Statistics and ProbabilityFOS: Computer and information sciencesEconomics and EconometricsMathematical optimizationDesign of Experiments020209 energyMonotonic functionSample (statistics)Mathematics - Statistics Theory02 engineering and technologyStatistics Theory (math.ST)01 natural sciencesStatistics - Computation010104 statistics & probabilityRobustness (computer science)[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Sampling design0202 electrical engineering electronic engineering information engineeringFOS: Mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsDependenceUncertainty analysisLatin hypercube samplingComputation (stat.CO)MathematicsApplied MathematicsComputer experimentFunction (mathematics)[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Computer experiment[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]Latin hypercube samplingModeling and SimulationUncertainty analysisSocial Sciences (miscellaneous)Analysis
researchProduct

Statistics of return times for weighted maps of the interval

2000

For non markovian, piecewise monotonic maps of the interval associated to a potential, we prove that the law of the entrance time in a cylinder, when renormalized by the measure of the cylinder, converges to an exponential law for almost all cylinders. Thanks to this result, we prove that the fluctuations of Rn, first return time in a cylinder, are lognormal.

Statistics and ProbabilityMathematical analysisMarkov processMonotonic functionCylinder (engine)law.inventionPhysics::Fluid DynamicsReturn timesymbols.namesakelawLog-normal distributionPiecewisesymbolsStatistics Probability and UncertaintyExponential lawMathematicsAnnales de l'Institut Henri Poincare (B) Probability and Statistics
researchProduct

The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing

2016

Abstract This paper refers to the problem stated by Balakrishnan et al. (2002). They proved that maximum likelihood estimator (MLE) of the exponential mean obtained from grouped samples is stochastically ordered provided that the sequence of the successive distances between inspection times is decreasing. In this paper we show that the assumption of monotonicity of the sequence of distances can be dropped.

Statistics and ProbabilitySequenceExponential distributionMaximum likelihood010102 general mathematicsFixed-point theoremMonotonic function01 natural sciencesExponential functionGrouped data010104 statistics & probabilityStatisticsApplied mathematics0101 mathematicsStatistics Probability and UncertaintyMathematicsStatistics & Probability Letters
researchProduct

Estimating growth charts via nonparametric quantile regression: a practical framework with application in ecology.

2013

We discuss a practical and effective framework to estimate reference growth charts via regression quantiles. Inequality constraints are used to ensure both monotonicity and non-crossing of the estimated quantile curves and penalized splines are employed to model the nonlinear growth patterns with respect to age. A companion R package is presented and relevant code discussed to favour spreading and application of the proposed methods.

Statistics and ProbabilitySettore BIO/07 - EcologiaStatistics::TheoryEcology (disciplines)Nonparametric statisticsMonotonic functionRegressionStatistics::ComputationQuantile regressionNonlinear systemR packageStatisticsEconometricsStatistics::MethodologyGrowth charts Nonparametric regression quantiles Penalized splines P. oceanica modelling R softwareStatistics Probability and UncertaintySettore SECS-S/01 - StatisticaGeneral Environmental ScienceMathematicsQuantile
researchProduct