Search results for "Motor Cortex"
showing 10 items of 244 documents
Cerebellar, but not Motor or Parietal, High-Density Anodal Transcranial Direct Current Stimulation Facilitates Motor Adaptation.
2016
AbstractObjectives: Although motor adaptation is a highly relevant process for both everyday life as well as rehabilitation many details of this process are still unresolved. To evaluate the contribution of primary motor (M1), parietal and cerebellar areas to motor adaptation processes transcranial direct current stimulation (tDCS) has been applied. We hypothesized that anodal stimulation of the cerebellum and the M1 improves the learning process in mirror drawing, a task involving fine grained and spatially well-organized hand movements. Methods: High definition tDCS (HD-tDCS) allows a focal stimulation to modulate brain processes. In a single-session double-blind study, we compared the ef…
Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies
2001
The aim of this study was to identify the functional cerebral network involved in the central processing of itch and to detect analogies and differences to previously identified cerebral activation patterns triggered by painful noxious stimuli. Repeated positron emission tomography regional cerebral blood flow (rCBF) measurements using O15-labeled water were performed in six healthy right-handed male subjects (mean age 32 +/- 2 years). Each subject underwent 12 sequential rCBF measurements. In all subjects a standardized skin prick test was performed on the right forearm 2 min before each rCBF measurement. For activation, histamine was applied in nine tests in logarithmically increasing con…
Localization of Brain Networks Engaged by the Sustained Attention to Response Task Provides Quantitative Markers of Executive Impairment in Amyotroph…
2020
Abstract Objective: To identify cortical regions engaged during the sustained attention to response task (SART) and characterize changes in their activity associated with the neurodegenerative condition amyotrophic lateral sclerosis (ALS). Methods: High-density electroencephalography (EEG) was recorded from 33 controls and 23 ALS patients during a SART paradigm. Differences in associated event-related potential peaks were measured for Go and NoGo trials. Sources active during these peaks were localized, and ALS-associated differences were quantified. Results: Go and NoGo N2 and P3 peak sources were localized to the left primary motor cortex, bilateral dorsolateral prefrontal cortex (DLPFC),…
Asymmetry in the human primary somatosensory cortex and handedness.
2003
Brain asymmetry is a phenomenon well known for handedness and language specialization and has also been studied in motor cortex. Less is known about hemispheric asymmetries in the somatosensory cortex. In the present study, we systematically investigated the representation of somatosensory function analyzing early subcortical and cortical somatosensory-evoked potentials (SEP) after electrical stimulation of the right and left median nerve. In 16 subjects, we compared thresholds, the peripheral neurogram at Erb point, and, using MRI-based EEG source analysis, the P14 brainstem component as well as N20 and P22, the earliest cortical responses from the primary sensorimotor cortex. Handedness w…
All Talk and No Action: A Transcranial Magnetic Stimulation Study of Motor Cortex Activation during Action Word Production
2004
AbstractA number of researchers have proposed that the premotor and motor areas are critical for the representation of words that refer to actions, but not objects. Recent evidence against this hypothesis indicates that the left premotor cortex is more sensitive to grammatical differences than to conceptual differences between words. However, it may still be the case that other anterior motor regions are engaged in processing a word's sensorimotor features. In the present study, we used singleand paired-pulse transcranial magnetic stimulation to test the hypothesis that left primary motor cortex is activated during the retrieval of words (nouns and verbs) associated with specific actions. W…
The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects
2008
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to t…
Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials
2014
The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs).We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M…
Role of sensorimotor areas in early detection of motor errors: An EEG and TMS study
2019
Abstract Action execution is prone to errors and, while engaged in interaction, our brain is tuned to detect deviations from what one expects from other’s action. Prior research has shown that Event-Related-Potentials (ERPs) are specifically modulated by the observation of action mistakes interfering with goal achievement. However, in complex and modular actions, embedded motor errors do not necessarily produce an immediate effect on the global goal. Here we dissociate embedded motor goals from global action goals by asking subjects to observe familiar but untrained knotting actions. During knotting an embedded motor error (i.e. the rope is inserted top-down instead of bottom-up during the …
Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications
2003
The temporary improvement of visuospatial neglect during galvanic vestibular stimulation (Scand. J. Rehabil. Med. 31 (1999)117) may result from correction of the spatial reference frame distorted by the responsible lesion. Prior to an investigation of the neural basis of this effect in neurological patients, exploration of the neural mechanisms underlying such procedures in normals is required to provide insight into the physiological basis thereof. Despite their clinical impact, the neural mechanisms underlying the interaction of galvanic (and other) vestibular manipulations with visuospatial processing (and indeed the neural bases of how spatial reference frames are computed in man) remai…
Task-Modulated Corticocortical Synchrony in the Cognitive-Motor Network Supporting Handwriting
2019
Abstract Both motor and cognitive aspects of behavior depend on dynamic, accurately timed neural processes in large-scale brain networks. Here, we studied synchronous interplay between cortical regions during production of cognitive-motor sequences in humans. Specifically, variants of handwriting that differed in motor variability, linguistic content, and memorization of movement cues were contrasted to unveil functional sensitivity of corticocortical connections. Data-driven magnetoencephalography mapping (n = 10) uncovered modulation of mostly left-hemispheric corticocortical interactions, as quantified by relative changes in phase synchronization. At low frequencies (~2–13 Hz), enhanced …