Search results for "Multi-Objective Optimization."
showing 10 items of 189 documents
A New Paradigm in Interactive Evolutionary Multiobjective Optimization
2020
Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, whe…
Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems
2019
Abstract This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the non-dominated sorting genetic algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, res…
Introduction to General Duality Theory for Multi-Objective Optimization
1992
This is intended as a comprehensive introduction to the duality theory for vector optimization recently developed by C. Malivert and the present author [3]. It refers to arbitrarily given classes of mappings (dual elements) and extends the general duality theory proposed for scalar optimization by E. Balder, S. Kurcyusz and the present author [1] and P. Lindberg.
Multi-sensor Fusion through Adaptive Bayesian Networks
2011
Common sensory devices for measuring environmental data are typically heterogeneous, and present strict energy constraints; moreover, they are likely affected by noise, and their behavior may vary across time. Bayesian Networks constitute a suitable tool for pre-processing such data before performing more refined artificial reasoning; the approach proposed here aims at obtaining the best trade-off between performance and cost, by adapting the operating mode of the underlying sensory devices. Moreover, self-configuration of the nodes providing the evidence to the Bayesian network is carried out by means of an on-line multi-objective optimization.
Multi-objective optimization of building life cycle performance. A housing renovation case study in Northern Europe
2020
While the operational energy use of buildings is often regulated in current energy saving policies, their embodied greenhouse gas emissions still have a considerable mitigation potential. The study aims at developing a multi-objective optimization method for design and renovation of buildings incorporating the operational and embodied energy demands, global warming potential, and costs as objective functions. The optimization method was tested on the renovation of an apartment building in Denmark, mainly focusing envelope improvements as roof and exterior wall insulation and windows. Cellulose insulation has been the predominant result, together with fiber cement or aluminum-based cladding …
Boosting Design Space Explorations with Existing or Automatically Learned Knowledge
2012
During development, processor architectures can be tuned and configured by many different parameters. For benchmarking, automatic design space explorations (DSEs) with heuristic algorithms are a helpful approach to find the best settings for these parameters according to multiple objectives, e.g. performance, energy consumption, or real-time constraints. But if the setup is slightly changed and a new DSE has to be performed, it will start from scratch, resulting in very long evaluation times. To reduce the evaluation times we extend the NSGA-II algorithm in this article, such that automatic DSEs can be supported with a set of transformation rules defined in a highly readable format, the fuz…
On interactive multiobjective optimization with NIMBUS® in chemical process design
2005
We study multiobjective optimization problems arising from chemical process simulation. The interactive multiobjective optimization method NIMBUS®, developed at the University of Jyvaskyla, is combined with the BALAS® process simulator, developed at the VTT Technical Research Center of Finland, in order to provide a new interactive tool for designing chemical processes. Continuous interaction between the method and the designer provides a new efficient approach to explore Pareto optimal solutions and helps the designer to learn about the behaviour of the process. As an example of how the new tool can be used, we report the results of applying it in a heat recovery system design problem rela…
Register data in sample allocations for small-area estimation
2018
The inadequate control of sample sizes in surveys using stratified sampling and area estimation may occur when the overall sample size is small or auxiliary information is insufficiently used. Very small sample sizes are possible for some areas. The proposed allocation based on multi-objective optimization uses a small-area model and estimation method and semi-collected empirical data annually collected empirical data. The assessment of its performance at the area and at the population levels is based on design-based sample simulations. Five previously developed allocations serve as references. The model-based estimator is more accurate than the design-based Horvitz–Thompson estimator and t…
Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods
2018
Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization f…
An Adaptive Metamodel-Based Optimization Approach for Vehicle Suspension System Design
2014
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2014/965157 The performance index of a suspension system is a function of the maximum and minimum values over the parameter interval. Thus metamodel-based techniques can be used for designing suspension system hardpoints locations. In this study, an adaptive metamodel-based optimization approach is used to find the proper locations of the hardpoints, with the objectives considering the kinematic performance of the suspension. The adaptive optimization method helps to find the optimum locations of the hardpoints efficiently as it may be unachie…