6533b7d0fe1ef96bd125a625

RESEARCH PRODUCT

Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods

Kaisa MiettinenJosé F. Aldana-montesAntonio J. NebroAntonio J. NebroJosé García-nietoCristóbal Barba-gonzálezVesa Ojalehto

subject

Computer sciencepäätöksentekomultiple criteria decision makingContext (language use)02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesMulti-objective optimizationoptimointi0202 electrical engineering electronic engineering information engineeringmultiobjective optimization0101 mathematicsToma de decisionespreference articulationparticle swarm optimizationbusiness.industryParticle swarm optimizationDecision makermonitavoiteoptimointiPreferenceMulti-objective optimization010101 applied mathematicsBenchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer

description

Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization for guiding the generation of consecutive reference points, hence, replacing the decision maker in preference articulation. We use the artificial decision maker to compare interactive methods. We demonstrate the artificial decision maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to compare R-NSGA-II and WASF-GA as interactive methods. The experimental results show that the proposed artificial decision maker is useful and efficient. It offers an intuitive and flexible mechanism to capture the current context when testing interactive methods for decision making. Ministerio de Ciencia, Innovación y Universidades TIN2017-86049-R Junta de Andalucía P12-TIC-1519

http://urn.fi/URN:NBN:fi:jyu-201809124091