0000000000118230

AUTHOR

Vesa Ojalehto

Artificial Decision Maker Driven by PSO : An Approach for Testing Reference Point Based Interactive Methods

Over the years, many interactive multiobjective optimization methods based on a reference point have been proposed. With a reference point, the decision maker indicates desirable objective function values to iteratively direct the solution process. However, when analyzing the performance of these methods, a critical issue is how to systematically involve decision makers. A recent approach to this problem is to replace a decision maker with an artificial one to be able to systematically evaluate and compare reference point based interactive methods in controlled experiments. In this study, a new artificial decision maker is proposed, which reuses the dynamics of particle swarm optimization f…

research product

Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

Abstract We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker during the interactive solution process and at the same time decrease the amount of preference information expected from the decision maker. The agent assisted algorithm is not specific to any interactive me…

research product

Potential of interactive multiobjective optimization in supporting the design of a groundwater biodenitrification process

The design of water treatment plants requires simultaneous analysis of technical, economic and environmental aspects, identified by multiple conflicting objectives. We demonstrated the advantages of an interactive multiobjective optimization (MOO) method over a posteriori methods in an unexplored field, namely the design of a biological treatment plant for drinking water production, that tackles the process drawbacks, contrarily to what happens in a traditional volumetric-load-driven design procedure. Specifically, we consider a groundwater denitrification biofilter, simulated by the Activated Sludge Model modified with two-stage denitrification kinetics. Three objectives were defined (nitr…

research product

Demonstrating the Applicability of PAINT to Computationally Expensive Real-life Multiobjective Optimization

We demonstrate the applicability of a new PAINT method to speed up iterations of interactive methods in multiobjective optimization. As our test case, we solve a computationally expensive non-linear, five-objective problem of designing and operating a wastewater treatment plant. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpensive mixed integer linear surrogate problem for the original problem. We develop an IND-NIMBUS R PAINT module to combine the interactive NIMBUS method and the PAINT method and to find a preferred solution to the original problem. With the PAINT method, the solution process with the NIMBUS method take …

research product

Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method

Abstract Heat exchanger network synthesis (HENS) has been an active research area for more than 40 years because well-designed heat exchanger networks enable heat recovery in process industries in an energy- and cost-efficient manner. Due to ever increasing global competition and need to decrease the harmful effects done on the environment, there still is a continuous need to improve the heat exchanger networks and their synthesizing methods. In this work we present a HENS method that combines an interactive multi-objective optimization method with a simultaneous bilevel HENS method, where the bilevel part of the method is based on grouping of process streams and building aggregate streams …

research product

Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies

We consider multiobjective optimization problems where objective functions have different (or heterogeneous) evaluation times or latencies. This is of great relevance for (computationally) expensive multiobjective optimization as there is no reason to assume that all objective functions should take an equal amount of time to be evaluated (particularly when objectives are evaluated separately). To cope with such problems, we propose a variation of the Kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) called heterogeneous K-RVEA (short HK-RVEA). This algorithm is a merger of two main concepts designed to account for different latencies: A single-objective evolutionary a…

research product

NAUTILUS Navigator : free search interactive multiobjective optimization without trading-off

We propose a novel combination of an interactive multiobjective navigation method and a trade-off free way of asking and presenting preference information. The NAUTILUS Navigator is a method that enables the decision maker (DM) to navigate in real time from an inferior solution to the most preferred solution by gaining in all objectives simultaneously as (s)he approaches the Pareto optimal front. This means that, while the DM reaches her/his most preferred solution, (s)he avoids anchoring around the starting solution and, at the same time, sees how the ranges of the reachable objective function values shrink without trading-off. The progress of the motion towards the Pareto optimal front is…

research product

Comparing reference point based interactive multiobjective optimization methods without a human decision maker

AbstractInteractive multiobjective optimization methods have proven promising in solving optimization problems with conflicting objectives since they iteratively incorporate preference information of a decision maker in the search for the most preferred solution. To find the appropriate interactive method for various needs involves analysis of the strengths and weaknesses. However, extensive analysis with human decision makers may be too costly and for that reason, we propose an artificial decision maker to compare a class of popular interactive multiobjective optimization methods, i.e., reference point based methods. Without involving any human decision makers, the artificial decision make…

research product

APROS-NIMBUS: Dynamic Process Simulator and Interactive Multiobjective Optimization in Plant Automation

Abstract Virtual commissioning of chemical plants often involves a dynamic simulator and an optimization method. This paper demonstrates the integration of APROS, a dynamic process simulator and IND-NIMBUS, an interactive multiobjective optimization software. We implement a multiobjective concentration control problem in APROS involving conflicting objectives and employ a decision maker to interact with IND-NIMBUS and express his preference information to finally obtain his most preferred solution. The results of this study show that APROS and IND-NIMBUS can be integrated and an interactive multiobjective optimization method can help the decision maker in exploring trade-offs among conflict…

research product

An Approach to the Automatic Comparison of Reference Point-Based Interactive Methods for Multiobjective Optimization

Solving multiobjective optimization problems means finding the best balance among multiple conflicting objectives. This needs preference information from a decision maker who is a domain expert. In interactive methods, the decision maker takes part in an iterative process to learn about the interdependencies and can adjust the preferences. We address the need to compare different interactive multiobjective optimization methods, which is essential when selecting the most suited method for solving a particular problem. We concentrate on a class of interactive methods where a decision maker expresses preference information as reference points, i.e., desirable objective function values. Compari…

research product

Flexible Data Driven Inventory Management with Interactive Multiobjective Lot Size Optimization

We study data-driven decision support and formalise a path from data to decision making. We focus on lot sizing in inventory management with stochastic demand and propose an interactive multi-objective optimisation approach. We forecast demand with a Bayesian model, which is based on sales data. After identifying relevant objectives relying on the demand model, we formulate an optimisation problem to determine lot sizes for multiple future time periods. Our approach combines different interactive multi-objective optimisation methods for finding the best balance among the objectives. For that, a decision maker with substance knowledge directs the solution process with one’s preference inform…

research product

Towards Automatic Testing of Reference Point Based Interactive Methods

In order to understand strengths and weaknesses of optimization algorithms, it is important to have access to different types of test problems, well defined performance indicators and analysis tools. Such tools are widely available for testing evolutionary multiobjective optimization algorithms. To our knowledge, there do not exist tools for analyzing the performance of interactive multiobjective optimization methods based on the reference point approach to communicating preference information. The main barrier to such tools is the involvement of human decision makers into interactive solution processes, which makes the performance of interactive methods dependent on the performance of huma…

research product

DESDEO : An Open Framework for Interactive Multiobjective Optimization

We introduce a framework for interactive multiobjective optimization methods called DESDEO released under an open source license. With the framework, we want to make interactive methods easily accessible to be applied in solving real-world problems. The framework follows an object-oriented software design paradigm, where functionalities have been divided to modular, self-contained components. The framework contains implementations of some interactive methods, but also components which can be utilized to implement more interactive methods and, thus, increase the applicability of the framework. To demonstrate how the framework can be used, we consider an example problem where the pollution of…

research product

Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based Surrogate in a Discrete Decision Space

In this paper, a clustering based surrogate is proposed to be used in offline data-driven multiobjective optimization to reduce the size of the optimization problem in the decision space. The surrogate is combined with an interactive multiobjective optimization approach and it is applied to forest management planning with promising results. peerReviewed

research product

An interactive multi-objective approach to heat exchanger network synthesis

In this work we present a multi-objective approach to heat exchanger network synthesis. The approach solves a modified version of the Synheat model using an interactive multi-objective optimisation method, NIMBUS, which is implemented in GAMS. The results obtained demonstrate the potential of interactive multi-objective optimisation.

research product

Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study

Dynamic process simulators for plant-wide process simulation and multiobjective optimization tools can be used by industries as a means to cut costs and enhance profitability. Specifically, dynamic process simulators are useful in the process plant design phase, as they provide several benefits such as savings in time and costs. On the other hand, multiobjective optimization tools are useful in obtaining the best possible process designs when multiple conflicting objectives are to be optimized simultaneously. Here we concentrate on interactive multiobjective optimization. When multiobjective optimization methods are used in process design, they need an access to dynamic process simulators, …

research product

Applying the approximation method PAINT and the interactive method NIMBUS to the multiobjective optimization of operating a wastewater treatment plant

Using an interactive multiobjective optimization method called NIMBUS and an approximation method called PAINT, preferable solutions to a five-objective problem of operating a wastewater treatment plant are found. The decision maker giving preference information is an expert in wastewater treatment plant design at the engineering company Pöyry Finland Ltd. The wastewater treatment problem is computationally expensive and requires running a simulator to evaluate the values of the objective functions. This often leads to problems with interactive methods as the decision maker may get frustrated while waiting for new solutions to be computed. Thus, a newly developed PAINT method is used to spe…

research product

On Combining Explainable Artificial Intelligence and Interactive Multiobjective Optimization in Data-Driven Decision Support

research product

On solving computationally expensive multiobjective optimization problems with interactive methods

research product

Implementation aspects of interactive multiobjective optimization for modeling environments: The case of GAMS-NIMBUS

Abstract. Interactive multiobjective optimization methods have provided promising results in the literature but still their implementations are rare. Here we introduce a core structure of interactive methods to enable their convenient implementation. We also demonstrate how this core structure can be applied when implementing an interactive method using a modeling environment. Many modeling environments contain tools for single objective optimization but not for interactive multiobjective optimization. Furthermore, as a concrete example, we present GAMS-NIMBUS Tool which is an implementation of the classification-based NIMBUS method for the GAMS modeling environment. So far, interactive met…

research product

Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker during the interactive solution process and at the same time decrease the amount of preference information expected from the decision maker. The agent assisted algorithm is not specific to any interactive method or s…

research product