Search results for "Multi-Objective Optimization"

showing 10 items of 192 documents

PAINT : Pareto front interpolation for nonlinear multiobjective optimization

2011

A method called PAINT is introduced for computationally expensive multiobjective optimization problems. The method interpolates between a given set of Pareto optimal outcomes. The interpolation provided by the PAINT method implies a mixed integer linear surrogate problem for the original problem which can be optimized with any interactive method to make decisions concerning the original problem. When the scalarizations of the interactive method used do not introduce nonlinearity to the problem (which is true e.g., for the synchronous NIMBUS method), the scalarizations of the surrogate problem can be optimized with available mixed integer linear solvers. Thus, the use of the interactive meth…

Pareto optimalityMathematical optimizationMatematikControl and OptimizationApplied MathematicsComputationally expensive problemsMulti-objective optimizationmonitavoiteoptimointiSet (abstract data type)Computational MathematicsPareto optimalNonlinear systemMultiobjective optimization problemapproksimaatioPareto-optimaalisuusapproksimointiAlgorithmApproximationMathematicsInterpolationMathematicsInteger (computer science)Multiobjective optimizationInteractive decision making
researchProduct

On Dealing with Uncertainties from Kriging Models in Offline Data-Driven Evolutionary Multiobjective Optimization

2019

Many works on surrogate-assisted evolutionary multiobjective optimization have been devoted to problems where function evaluations are time-consuming (e.g., based on simulations). In many real-life optimization problems, mathematical or simulation models are not always available and, instead, we only have data from experiments, measurements or sensors. In such cases, optimization is to be performed on surrogate models built on the data available. The main challenge there is to fit an accurate surrogate model and to obtain meaningful solutions. We apply Kriging as a surrogate model and utilize corresponding uncertainty information in different ways during the optimization process. We discuss…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemComputer scienceetamodelling02 engineering and technologyMulti-objective optimizationTheoretical Computer ScienceData-drivensymbols.namesakeSurrogate modelMetamodellingKriging020204 information systemsMachine learning0202 electrical engineering electronic engineering information engineeringsurrogateGaussian process/dk/atira/pure/subjectarea/asjc/1700Gaussian processpareto-tehokkuusmonitavoiteoptimointikoneoppiminensymbolsBenchmark (computing)/dk/atira/pure/subjectarea/asjc/2600/2614020201 artificial intelligence & image processingnormaalijakaumaComputer Science(all)
researchProduct

Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm

2019

We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. We are motivated by practical applicability and focus on two main challenges faced by practitioners in industry: 1) meaningful formulation of the optimization problem reflecting the needs of a decision maker and 2) finding a desirable solution based on a decision maker’s preferences when solving a problem with computationally expensive function evaluations. For the first challenge, we describe the procedure of modelling a component in the air intake ventilation system wi…

Pareto optimalitymallintaminenMathematical optimizationOptimization problemProcess (engineering)Computer sciencemedia_common.quotation_subjectmultiple criteria decision makingEvolutionary algorithmoptimal shape designpreference information0102 computer and information sciences02 engineering and technology01 natural sciencesComponent (UML)0202 electrical engineering electronic engineering information engineeringBaseline (configuration management)Function (engineering)Preference (economics)media_commonpareto-tehokkuusilmanvaihtojärjestelmätmetamodelsmonitavoiteoptimointikoneoppiminen010201 computation theory & mathematicsevolutionary multi-objective optimizationcomputational costs020201 artificial intelligence & image processingmuotoProceedings of the Genetic and Evolutionary Computation Conference
researchProduct

APROS-NIMBUS: Dynamic Process Simulator and Interactive Multiobjective Optimization in Plant Automation

2013

Abstract Virtual commissioning of chemical plants often involves a dynamic simulator and an optimization method. This paper demonstrates the integration of APROS, a dynamic process simulator and IND-NIMBUS, an interactive multiobjective optimization software. We implement a multiobjective concentration control problem in APROS involving conflicting objectives and employ a decision maker to interact with IND-NIMBUS and express his preference information to finally obtain his most preferred solution. The results of this study show that APROS and IND-NIMBUS can be integrated and an interactive multiobjective optimization method can help the decision maker in exploring trade-offs among conflict…

Plant automationpareto optimalityComputer scienceProcess (engineering)business.industryControl (management)multiple criteria decision makingDecision makerMulti-objective optimizationdecision makingSoftwareConflicting objectivesbusinessSimulation
researchProduct

Interactive Multiobjective Optimization in Lot Sizing with Safety Stock and Safety Lead Time

2021

In this paper, we integrate a lot sizing problem with the problem of determining optimal values of safety stock and safety lead time. We propose a probability of product availability formula to assess the quality of safety lead time and a multiobjective optimization model as an integrated lot sizing problem. In the proposed model, we optimize six objectives simultaneously: minimizing purchasing cost, ordering cost, holding cost and, at the same time, maximizing cycle service level, probability of product availability and inventory turnover. To present the applicability of the proposed model, we consider a real case study with data from a manufacturing company and apply the interactive NAUTI…

Safety stockOperations researchComputer sciencemedia_common.quotation_subjectService levelHolding costQuality (business)Multi-objective optimizationLead timePurchasingSizingmedia_common
researchProduct

Supporting the Sustainable Energy Transition in the Canary Islands: Simulation and Optimization of Multiple Energy System Layouts and Economic Scenar…

2021

The Canary Islands have great potential for the implementation of sustainable energy systems due to its availability of natural resources. The archipelago is not connected to the mainland electricity grid and the current generation system is mainly based on traditional fossil fuel. Therefore, the islands strongly dependent on fuel importations, with high costs due to logistics. Furthermore, due to the inadequate coverage of residential heating and cooling needs, the per capita energy consumption is far below the Spanish national average. This occurrence has inspired an intense debate on the current development model of the Canary Archipelago, which has led to the implementation of actions a…

Science (General)renewable technologies020209 energyPopulationTime horizon02 engineering and technologyTRNSYSsustainable energy transitionQ1-390020401 chemical engineeringsustainable energy transition renewable technologies sustainability in Canary Islands modeling and simulation multiple scenarios multi-objective optimizationmodeling and simulation0202 electrical engineering electronic engineering information engineeringEnergy supply0204 chemical engineeringeducationH1-99education.field_of_studyWind powermultiple scenariosbusiness.industryEnvironmental impact of the energy industryEnergy consumptionEnvironmental economicssustainability in Canary IslandsRenewable energySocial sciences (General)multi-objective optimizationEnvironmental sciencebusinessFrontiers in Sustainable Cities
researchProduct

Efficient evolutionary approach to approximate the Pareto-optimal set in multiobjective optimization, UPS-EMOA

2010

Solving real-life engineering problems requires often multiobjective, global, and efficient (in terms of objective function evaluations) treatment. In this study, we consider problems of this type by discussing some drawbacks of the current methods and then introduce a new population-based multiobjective optimization algorithm UPS-EMOA which produces a dense (not limited to the population size) approximation of the Pareto-optimal set in a computationally effective manner.

Set (abstract data type)Pareto optimalMathematical optimizationControl and OptimizationApplied MathematicsPopulation sizeNew populationMulti-objective optimizationSoftwareMathematicsMultiobjective optimization algorithmOptimization Methods and Software
researchProduct

Constrained Robust MultiObjective Optimization for Reactive Design in Distribution Systems

2006

This paper presents a new formulation including robustness of solution of constrained multiobjective design or reactive power compensation. The algorithm used for optimization is the NSGA-II (Non dominated Sorting Genetic Algorithm II) with a special crowded comparison operator for constraints handling. The need for including the issue of robustness of solutions derives from the simple observation that loads are uncertain in distribution systems and their estimation is often affected by errors. In design problems it is desirable to consider the loads with a certain range of variation. In this paper the NSGA-II algorithm is applied to efficiently solve the issue and the solutions attained co…

Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaDistribution systemMathematical optimizationDistribution networksRobustness (computer science)Stochastic processControl theoryGenetic algorithmOptimal reactive power design Multiobjective optimization robust optimization distribution systemsRobust optimizationAC powerMulti-objective optimizationMathematics2006 International Conference on Probabilistic Methods Applied to Power Systems
researchProduct

A New Meta-Heuristic Multi-Objective Approach For Optimal Dispatch of Dispersed and Renewable Generating Units in Power Distribution Systems

2011

The application of stochastic methods in engineering research and optimization has been increasing over the past few decades. Ant Colony Optimization, in particular, has been attracting growing attention as a promising approach both in discrete and continuous domains. The present work proposes a multi-objective Ant Colony Optimization for continuous domains showing good convergence properties and uniform coverage of the non-dominated front. These properties have been proved both with mathematical test functions and with a complex real world problem. Besides the second part of the chapter presents the application of the new algorithm to the problem of optimal dispatch of dispersed power gene…

Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaDistribution systemMathematical optimizationstochastic multi-objective optimization multi-objective ant colony optimization optimal power dispatch microgridsbusiness.industryComputer scienceObjective approachOptimal dispatchMeta heuristicbusinessRenewable energyPower (physics)
researchProduct

Multi-objective Optimization of Energy Hubs at the Crossroad of Three Energy Distribution Networks

2016

This paper provides a multi-objective optimization framework aimed at the management of a multi-carrier energy system involving both electricity and hydrogen. Using the concept of the multi-carrier hub, the proposed system has been modelled in order to define completely every energy flow inside the plant. After that, a heuristic multi-objective optimization algorithm, the Non-dominated Sorting Genetic Algorithm II, has been implemented for the energy management of the plant, taking into account simultaneously three different objective functions related to economic and technical goals. This optimization process provides the set point defining the working configuration of the plant for a dayl…

Settore ING-IND/33 - Sistemi Elettrici Per L'EnergiaOPC protocolmulti-objective optimizationenergy management systemmulti-carrier hubhydrogen storage
researchProduct