Search results for "Multi"

showing 10 items of 17152 documents

Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions

2021

The mild activity of basaltic volcanoes is punctuated by violent explosive eruptions that occur without obvious precursors. Modelling the source processes of these sudden blasts is challenging. Here, we use two decades of ground deformation (tilt) records from Stromboli volcano to shed light, with unprecedented detail, on the short-term (minute-scale) conduit processes that drive such violent volcanic eruptions. We find that explosive eruptions, with source parameters spanning seven orders of magnitude, all share a common pre-blast ground inflation trend. We explain this exponential inflation using a model in which pressure build-up is caused by the rapid expansion of volatile-rich magma ri…

010504 meteorology & atmospheric sciencesExplosive materialScienceGeneral Physics and AstronomyMagnitude (mathematics)VolcanologyDeformation (meteorology)010502 geochemistry & geophysics01 natural sciencestiltGeneral Biochemistry Genetics and Molecular BiologyArticlePhysics::Geophysicsground deformationElectrical conduitOrders of magnitude (specific energy)ground deformation conduit dynamics early warningAstrophysics::Solar and Stellar AstrophysicsStromboli0105 earth and related environmental sciencesgeographyMultidisciplinarygeography.geographical_feature_categoryExplosive eruptionQGeneral ChemistryGeophysicsVolcanoMagmaSeismologyGeologyNature Communications
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct

A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger

2018

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 10 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evol…

010504 meteorology & atmospheric sciencesGeneral Science & TechnologyInfraredAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxy merger01 natural sciencesTidal disruption eventGravitational fieldMD Multidisciplinary0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCOREBLACK-HOLES010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Supermassive black holeta115Science & TechnologyMultidisciplinaryAstrophysics - Astrophysics of GalaxiesGalaxyMultidisciplinary SciencesWavelengthAstrophysics of Galaxies (astro-ph.GA)Science & Technology - Other TopicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEMISSIONSTARS
researchProduct

Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-easte…

2016

This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1 October 2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguishing future activation sites of debris flow and debris slide, which where the main source of fai…

010504 meteorology & atmospheric sciencesGeography Planning and DevelopmentMultispectral imageLandslideLand cover010502 geochemistry & geophysics01 natural sciencesDebrisMultispectral pattern recognitionDebris flowAdvanced Spaceborne Thermal Emission and Reflection RadiometerEarth and Planetary Sciences (miscellaneous)Digital elevation modelGeology0105 earth and related environmental sciencesEarth-Surface ProcessesRemote sensingEarth Surface Processes and Landforms
researchProduct

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020

Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…

010504 meteorology & atmospheric sciencesHYDROLOGICAL MODELSPopulation0207 environmental engineeringFLOOD RISKEnvironmental Sciences & Ecology02 engineering and technologySubtropics[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology01 natural sciencesPopulation densityLatitudeClimate-related extreme events/dk/atira/pure/sustainabledevelopmentgoals/climate_actionEarth and Planetary Sciences (miscellaneous)SDG 13 - Climate ActionMeteorology & Atmospheric SciencesBURNED AREAGLOBAL CROP PRODUCTIONGeosciences Multidisciplinary020701 environmental engineeringeducation0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)education.field_of_studyScience & TechnologyLand useGlobal warmingGlobal warmingVEGETATION MODEL ORCHIDEEGeology15. Life on landTERRESTRIAL CARBON BALANCE13. Climate actionClimatologyPhysical SciencesTROPICAL CYCLONE ACTIVITYHURRICANE INTENSITYEnvironmental scienceTropical cycloneINTERANNUAL VARIABILITYLife Sciences & BiomedicineEnvironmental SciencesINCORPORATING SPITFIRE
researchProduct

Planktic foraminiferal changes in the western Mediterranean Anthropocene

2021

The increase in anthropogenic induced warming over the last two centuries is impacting marine environment. Planktic foraminifera are a globally distributed calcifying marine zooplankton responding sensitively to changes in sea surface temperatures and interacting with the food web structure. Here, we study two high resolution multicore records from two western Mediterranean Sea regions (Alboran and Balearic basins), areas highly affected by both natural climate change and anthropogenic warming. Cores cover the time interval from the Medieval Climate Anomaly to present. Reconstructed sea surface temperatures are in good agreement with other results, tracing temperature changes through the Co…

010504 meteorology & atmospheric sciencesLast 1500 yearsPopulationClimate change02 engineering and technologyOceanography01 natural sciencesWestern Mediterranean SeaForaminiferaMediterranean seaAtlantic multidecadal oscillation0202 electrical engineering electronic engineering information engineeringeducationAnthropogenic warming0105 earth and related environmental sciencesGlobal and Planetary Changeeducation.field_of_studybiology020206 networking & telecommunicationsLast 1500 yearGlobigerina bulloidesPlanktic foraminiferabiology.organism_classificationOceanographyNorth Atlantic oscillationUpwellingNatural variabilityMarine surface productionGeology
researchProduct

Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile

2016

International audience; Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake i…

010504 meteorology & atmospheric sciencesLavaEarth scienceUAVUV camera010502 geochemistry & geophysics01 natural sciencesElectrical conduitFlux (metallurgy)Geochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyPetrologyGeophysic0105 earth and related environmental sciencesgeographyTrail By Firegeography.geographical_feature_categoryTrail ByLava domeFireconduit dynamicPlumeGeophysicsVolcano13. Climate actionSpace and Planetary ScienceGas slugMagmavolcanic degassingGeologyMulti-GAS
researchProduct

Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes

2017

AbstractEffusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we…

010504 meteorology & atmospheric sciencesLavaScienceHawaiian eruptionVolcanologyStromboli; effusion rate; lava flowMagma chamberStromboli effusion rate lava flow010502 geochemistry & geophysics01 natural sciencesArticleeffusion rateEffusive eruptionStratovolcanoEffusive EruptionsStromboliPetrology0105 earth and related environmental sciencesgeographyMultidisciplinaryExplosive eruptiongeography.geographical_feature_categoryQRVolcanology; Effusive EruptionsVolcanoMagmaMedicinelava flowGeology
researchProduct

2016

Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…

010504 meteorology & atmospheric sciencesMeteorologyFLUXNET0208 environmental biotechnology0207 environmental engineeringlcsh:Life02 engineering and technologySensible heatAtmospheric sciences7. Clean energy01 natural sciencesFlux (metallurgy)FluxNetMachine learning; Carbon fluxes; Energy fluxes; FLUXNET; Remote sensing; FLUXCOMlcsh:QH540-549.5Latent heatMachine learningCarbon fluxes020701 environmental engineeringEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface ProcessesFLUXCOMMultivariate adaptive regression splineslcsh:QE1-996.5Empirical modellingPrimary production15. Life on landRemote sensingEnergy fluxes020801 environmental engineeringlcsh:Geologylcsh:QH501-531Kernel method13. Climate actionEnvironmental sciencelcsh:EcologyBiogeosciences
researchProduct

Hydroxylamine released by nitrifying microorganisms is a precursor for HONO emission from drying soils

2018

AbstractNitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the atmosphere´s primary oxidant. An unknown strong daytime source of HONO is required to explain measurements in ambient air. Emissions from soils are one of the potential sources. Ammonia-oxidizing bacteria (AOB) have been identified as possible producers of these HONO soil emissions. However, the mechanisms for production and release of HONO in soils are not fully understood. In this study, we used a dynamic soil-chamber system to provide direct evidence that gaseous emissions from nitrifying pure cultures contain hydroxylamine (NH2OH), which is subsequently converted to HONO in a heterogeneous reaction w…

010504 meteorology & atmospheric sciencesMicroorganismScienceHeterotrophNitrous AcidHydroxylamine010501 environmental sciences01 natural sciencesArticlechemistry.chemical_compoundSoilHydroxylamineAmmoniaSoil Microbiology0105 earth and related environmental sciencesNitrous acidMultidisciplinarybiologyBacteriaAtmosphereHydroxyl RadicalQRbiology.organism_classificationArchaeaNitrificationchemistryNitrifying bacteriaEnvironmental chemistryMedicineHydroxyl radicalNitrificationGasesSoil microbiologyOxidation-ReductionScientific Reports
researchProduct