Search results for "Multilayer Perceptron"

showing 10 items of 52 documents

A method for modeling the battery state of charge in wireless sensor networks

2015

In this paper we propose a method for obtaining an analytic model of the battery State-of-Charge (SoC) in wireless sensor nodes. The objective is to find simple models that can be used to estimate accurately the real battery state and consequently the node lifetime. Running the model in the network nodes, we can provide the motes with the required information to implement applications that can be considered as battery-aware. The proposed methodology reduces the computational complexity of the model avoiding complicated electrochemical simulations and treating the battery as an unknown system with an output that can be predicted using simple mathematical models. At a first stage, during a se…

Battery (electricity)EngineeringEnergyMathematical modelbusiness.industryNode (networking)Real-time computingWireless sensor networksTECNOLOGIA ELECTRONICAKey distribution in wireless sensor networksMultilayer perceptronComputer Science::Networking and Internet ArchitectureElectronic engineeringMobile wireless sensor networkBatteries State-of-ChargeWirelessBatteries modelingElectrical and Electronic EngineeringbusinessInstrumentationWireless sensor network
researchProduct

The Application of Machine Learning Algorithms to the Analysis of Electromyographic Patterns From Arthritic Patients

2009

The main aim of our study was to investigate the possibility of applying machine learning techniques to the analysis of electromyographic patterns (EMG) collected from arthritic patients during gait. The EMG recordings were collected from the lower limbs of patients with arthritis and compared with those of healthy subjects (CO) with no musculoskeletal disorder. The study involved subjects suffering from two forms of arthritis, viz, rheumatoid arthritis (RA) and hip osteoarthritis (OA). The analysis of the data was plagued by two problems which frequently render the analysis of this type of data extremely difficult. One was the small number of human subjects that could be included in the in…

Biomedical EngineeringArthritisElectromyographyMachine learningcomputer.software_genreGait (human)Musculoskeletal disorderArtificial IntelligenceInternal MedicineHumansMedicineGaitArtificial neural networkmedicine.diagnostic_testElectromyographybusiness.industryArthritisData CollectionGeneral NeuroscienceRehabilitationReproducibility of ResultsSignal Processing Computer-AssistedLinear discriminant analysismedicine.diseaseBiomechanical PhenomenaKernel methodROC CurveMultilayer perceptronArtificial intelligencebusinesscomputerAlgorithmAlgorithmsIEEE Transactions on Neural Systems and Rehabilitation Engineering
researchProduct

Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks

2020

In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basin…

Coefficient of determinationArtificial neural networkRemote sensing applicationvesien tilaspektrikuvausHyperspectral imagingneuroverkotvedenlaatuConvolutional neural networkwater qualityPearson product-moment correlation coefficientsymbols.namesakeremote sensinghyperspectralilmakuvakartoitusMultilayer perceptronconvolutional neural networkssymbolsEnvironmental scienceWater qualitykaukokartoitusRemote sensing
researchProduct

Contextual neural-network based spectrum prediction for cognitive radio

2015

Cognitive radio is the technique of effective electromagnetic spectrum usage important for future wireless communication including 5G networks. Neural networks are nature-inspired computational models used to solve cognitive radio prediction problems. This paper presents the use of contextual Sigma-if neural network in prediction of channel states for cognitive radio. Our results indicate that Sigma-if neural network confirms better predictions than Multilayer Perceptron (MLP) network and decreases sensing time for the benefit of the increase of the effectiveness of e-m spectrum usage.

Cognitive modelComputational modelArtificial neural networkspectrum sensingbusiness.industryTime delay neural networkComputer scienceComputer Science::Neural and Evolutionary Computationartificial intelligenceCognitive networkMachine learningcomputer.software_genrecontextual predictionCognitive radioMultilayer perceptron5G communicationcontextual processingWirelessArtificial intelligencebusinesscomputer2015 Fourth International Conference on Future Generation Communication Technology (FGCT)
researchProduct

Day-ahead forecasting for photovoltaic power using artificial neural networks ensembles

2016

Solar photovoltaic plants power output forecasting using machine learning techniques can be of a great advantage to energy producers when they are implemented with day-ahead energy market data. In this work a model was developed using a supervised learning algorithm of multilayer perceptron feedforward artificial neural network to predict the next twenty-four hours (day-ahead) power of a solar facility using fetched weather forecast of the following day. Each set of tested network configuration was trained by the historical power output of the plant as a target. For each configuration, one hundred networks ensembles was averaged to give the ability to generalize a better forecast. The train…

ComponentComputer science020209 energyEnergy Engineering and Power Technologyforecasting02 engineering and technologyMachine learningcomputer.software_genrephotovoltaicSet (abstract data type)0202 electrical engineering electronic engineering information engineeringEnergy marketRenewable EnergyStyleStylingSustainability and the EnvironmentArtificial neural networkbusiness.industryFormattingPhotovoltaic systemFeed forwardComponent; Formatting; Insert (key words); Style; Styling; Energy Engineering and Power Technology; Renewable Energy Sustainability and the EnvironmentInsert (key words)Power (physics)Settore ING-IND/31 - ElettrotecnicaMultilayer perceptronArtificial intelligencebusinessartificial neural networkscomputerEnergy (signal processing)2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

BELM: Bayesian Extreme Learning Machine

2011

The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when dealing with many patterns defined in a high-dimensional space. This brief proposes a bayesian approach to ELM, which presents some advantages over other approaches: it allows the introduction of a priori knowledge; obtains the confidence intervals (CIs) without the need of applying methods that are computationally intensive, e.g., bootstrap…

Computer Networks and CommunicationsComputer scienceComputer Science::Neural and Evolutionary ComputationBayesian probabilityOverfittingMachine learningcomputer.software_genrePattern Recognition AutomatedReduction (complexity)Artificial IntelligenceComputer SimulationRadial basis functionExtreme learning machineArtificial neural networkbusiness.industryEstimation theoryBayes TheoremGeneral MedicineComputer Science ApplicationsMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsSoftwareIEEE Transactions on Neural Networks
researchProduct

Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contamin…

2011

The capacity of multi-layer perceptron artificial neural networks (MLP-ANN) and radial-basis function networks (RBFNs) to predict deoxynivalenol (DON) accumulation in barley seeds contaminated with Fusarium culmorum under different conditions has been assessed. Temperature (20-28 °C), water activity (0.94-0.98), inoculum size (7-15 mm diameter), and time were the inputs while DON concentration was the output. The dataset was used to train, validate and test many ANNs. Minimizing the mean-square error (MSE) was used to choose the optimal network. Single-layer perceptrons with low number of hidden nodes proved better than double-layer perceptrons, but the performance depended on the training …

Computer Science::Neural and Evolutionary ComputationMachine learningcomputer.software_genreTECNOLOGIA ELECTRONICAB TrichothecenesFusarium culmorumRadial basis functionFusarium culmorumMathematicsbiologyArtificial neural networkPredictive microbiologybusiness.industryHordeumFunction (mathematics)biology.organism_classificationPerceptronMicrobial growthPredictive microbiologyArtificial intelligencebusinessBiological systemcomputerLeuconostoc-mesenteroidesFood ScienceBiotechnologyMultilayer perceptron neural network
researchProduct

Proactive Handoff of Secondary User in Cognitive Radio Network Using Machine Learning Techniques

2021

Spectrum management always appears as an essential part of modern communication systems. Handoff is initiated when the signal strength of a current user deteriorates below a certain threshold. In cognitive radio network, the perception of handoff is different due to the presence of two categories of users: certified/primary user and uncertified/secondary user. The reason for the spectrum handoff arises when the primary user (PU) returns to one of its band used by the secondary user. The spectrum handoff is of two types: reactive handoff and proactive handoff. There are certain limitations in reactive handoff, such as it suffers from prolonged handoff latency and interference. In the proacti…

Computer sciencebusiness.industryComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSDecision treeCommunications systemMachine learningcomputer.software_genreSpectrum managementRandom forestSupport vector machineCognitive radioHandoverMultilayer perceptronArtificial intelligencebusinesscomputer
researchProduct

A convolutional neural network framework for blind mesh visual quality assessment

2017

In this paper, we propose a new method for blind mesh visual quality assessment using a deep learning approach. To do this, we first extract visual representative features by computing locally curvature and dihedral angles from each distorted mesh. Then, we determine from these features a set of 2D patches which are learned to a convolutional neural network (CNN). The network consists of two convolutional layers with two max-pooling layers. Then, a multilayer perceptron (MLP) with two fully connected layers is integrated to summarize the learned representation into an output node. With this network structure, feature learning and regression are used to predict the quality score of a given d…

Computer sciencebusiness.industryDeep learningNode (networking)Feature extraction020207 software engineeringPattern recognition02 engineering and technologyConvolutional neural networkVisualizationSet (abstract data type)Multilayer perceptron0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessFeature learning2017 IEEE International Conference on Image Processing (ICIP)
researchProduct

Comparing ELM Against MLP for Electrical Power Prediction in Buildings

2015

The study of energy efficiency in buildings is an active field of research. Modelling and predicting energy related magnitudes leads to analyse electric power consumption and can achieve economical benefits. In this study, two machine learning techniques are applied to predict active power in buildings. The real data acquired corresponds to time, environmental and electrical data of 30 buildings belonging to the University of Leon (Spain). Firstly, we segmented buildings in terms of their energy consumption using principal component analysis. Afterwards we applied ELM and MLP methods to compare their performance. Models were studied for different variable selections. Our analysis shows that…

Computer sciencebusiness.industryEnergy consumptionAC powerMachine learningcomputer.software_genreField (computer science)Multilayer perceptronPrincipal component analysisArtificial intelligenceElectric powerbusinesscomputerEnergy (signal processing)Efficient energy use
researchProduct