6533b7dbfe1ef96bd127012a

RESEARCH PRODUCT

Day-ahead forecasting for photovoltaic power using artificial neural networks ensembles

Fabio ViolaM. OmarMarco MussettaEmanuele OgliariAlberto DolaraG. Magistrati

subject

ComponentComputer science020209 energyEnergy Engineering and Power Technologyforecasting02 engineering and technologyMachine learningcomputer.software_genrephotovoltaicSet (abstract data type)0202 electrical engineering electronic engineering information engineeringEnergy marketRenewable EnergyStyleStylingSustainability and the EnvironmentArtificial neural networkbusiness.industryFormattingPhotovoltaic systemFeed forwardComponent; Formatting; Insert (key words); Style; Styling; Energy Engineering and Power Technology; Renewable Energy Sustainability and the EnvironmentInsert (key words)Power (physics)Settore ING-IND/31 - ElettrotecnicaMultilayer perceptronArtificial intelligencebusinessartificial neural networkscomputerEnergy (signal processing)

description

Solar photovoltaic plants power output forecasting using machine learning techniques can be of a great advantage to energy producers when they are implemented with day-ahead energy market data. In this work a model was developed using a supervised learning algorithm of multilayer perceptron feedforward artificial neural network to predict the next twenty-four hours (day-ahead) power of a solar facility using fetched weather forecast of the following day. Each set of tested network configuration was trained by the historical power output of the plant as a target. For each configuration, one hundred networks ensembles was averaged to give the ability to generalize a better forecast. The trained ensembles performances were analyzed using statistical indicators. The best-performing model ensembles were eventually used to predict power from the automatically fetched weather data.

https://doi.org/10.1109/icrera.2016.7884513