Search results for "Multispectral"
showing 10 items of 242 documents
Design, Development and Evaluation of a System for the Detection of Aerial Parts and Measurement of Growth Indices of Bell Pepper Plant Based on Ster…
2022
During the growth of plants, monitoring them brings much benefits to the producers. This monitoring includes the measurement of physical properties, counting plants leaves, detection of plants and separation of them from weeds. All these can be done different techniques, however, the techniques are favorable that are non-destructive because plant is a very sensitive creature that any manipulation can put disorder in its growth or lead to losing leaves or branches. Imaging techniques are of the best solutions for plants growth monitoring and geometric measurements. In this regard, in this project the use of stereo imaging and multispectral data was studied. Active and passive stereo imaging …
Multispectral constancy for illuminant invariant representation of multispectral images
2018
A conventional color imaging system provides high resolution spatial information and low resolution spectral data. In contrast, a multispectral imaging system is able to provide both the spectral and spatial information of a scene in high resolution. A multispectral imaging system is complex and it is not easy to use it as a hand held device for acquisition of data in uncontrolled conditions. The use of multispectral imaging for computer vision applications has started recently but is not very efficient due to these limitations. Therefore, most of the computer vision systems still rely on traditional color imaging and the potential of multispectral imaging for these applications has yet to …
ETUDE ET RÉALISATION D'UN DETECTEUR (FILTRE) MULTISPECTRAL PAR DISPERSION NON DESTRUCTIVE SPECTRALE A TRAVERS DES FILMES A NONSTRUCTURE
2020
The development of multispectral imaging, holography and lithography techniques exploits the properties of diffracting arrays in a wide variety of photonic components. They are incorporated in laser diodes as distributed Bragg reflectors, in various integrated optical functions for wavelength division multiplexing or optical interconnections, or inscribed within the fibers themselves, leading to a wide variety of sensors for detection of chemical elements, measurement of temperatures, pressures, accelerations of acquisition and or restitution of multispectral images, etc. [Lee et al. 2007] [Pagnoux et al. 2005].Among these devices, the resonant networks arouse a great interest because they …
Surface Emissivity Retrieval From Airborne Hyperspectral Scanner Data: Insights on Atmospheric Correction and Noise Removal
2012
Airborne multispectral imagers have been used in validation campaigns in order to acquire very high spatial resolution data as a benchmark for current or future satellite data. Imagery acquired with such sensors implies specific data processing in relation to view-angle-dependent atmospheric correction and removal or minimization of stripping-based noise. It is necessary to appropriately perform this processing in order to benefit from reference imageries of surface temperature (T) and emissivity (e) maps retrieved from thermal infrared data. In particular, e images generated from T/e separation algorithms show undesirable noise that jeopardizes their photointerpretation. This letter addres…
Affine compensation of illumination in hyperspectral remote sensing images
2009
A problem when working with optical satellite or airborne images is the need to compensate for changes in the illumination conditions at the time of acquisition. This is particularly critical when working with time series of data. Atmospheric correction strategies based on radiative transfer codes may provide a rigorous solution but it may not be the best solution for situations where a huge amount of hyperspectral images may need to be processed and computational time is a critical factor. The GMES (”Global Monitoring for Environment and Security”) initiative has promoted the creation of a new generation of satellites (the SENTINEL series) with ”ultra-high resolution” and ”superspectral im…
Influence of solar and sensor angles on chlorophyll estimation for geostationary ocean color imager
2012
The impact of the solar and sensor angles on band-ratio chlorophyll concentration (Chl) estimation in Case 1 waters (open ocean) is analyzed in this work. The error range of Chl estimation due to angular variation is evaluated. The radiative transfer code Hydrolight is used for remote sensing reflectance simulation for 20 spectral bands. OC4v4 algorithm is used for Chl estimation. The results indicate that the error range of Chl estimation is between -41.91% and +46.15% when Chl range is from 0.0425 mg/m 3 to 10.6685 mg/m 3 and the solar and sensor zenith angles vary between 0 and 80°. This study provides a reference to determine the effective observation area of a future multispectral or h…
RADIOMETRIC CALIBRATION OF A MULTISPECTRAL CAMERA
2006
We describe in detail a method for calibrating a multispectral imaging system based on interference filters. The calibration aims to remove systematic noises introduced by the sensor, and optic and/or filters from multispectral images. After which, we can correct the non-linearity of the sensor response. Systematic noises are measured through a rigorous protocol for acquiring offset, and thermal, and Flat-Field images. The methods for acquiring Flat-Field image, and linearizing sensor response are novel and particularly efficient in the case of a multispectral imaging system. Indeed, in such a system, the reconstruction of a spectrum for each pixel comes from the set of values taken by this…
Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency.
2018
In two-dimensional structured illumination microscopy (2D-SIM), high-resolution images with optimal optical sectioning (OS) cannot be obtained simultaneously. This tradeoff can be overcome by using a tunable-frequency 2D-SIM system and a proper reconstruction method. The goal of this work is twofold. First, we present a computational approach to reconstruct optical-sectioned images with super-resolution enhancement (OS-SR) by using a tunable SIM system. Second, we propose an incoherent tunable-frequency 2D-SIM system based on a Fresnel biprism implementation. Integration of the proposed computational method with this tunable structured illumination (SI) system results in a new 2D-SIM system…
Optimization of a polarization imaging system for 3D measurements of transparent objects
2009
This paper presents a multispectral imaging system for 3D reconstruction of transparent objects based on "shape from polarization" technique. The originality of this work relies on a multispectral active lighting system which enables to cope with the two ambiguities on the zenith angle and azimuth angle. A calibration step allows optimising the polarimetric measurements. Example of a reconstructed transparent object is presented.
Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation
2022
International audience; In this study, stationary and time-resolvedfluorescence signatures, were statistically and chemometrically analyzed among three typologies of Chardonnay wines (A, B and C) with the objectives to evaluate their sensitivity to acidic and polyphenolic changes. For that purpose, a dataset was built using Excitation Emission Matrices of fluorescence (N = 103) decomposed by a Parallel Factor Analysis (PARAFAC), andfluorescence decays (N = 22), mathematically fitted, using the conventional exponential modeling and the phasor plot representation. Wine PARAFAC component C4 coupledwith its phasor plot g and s values enable the description of malolactic fermentation (MLF) occur…