Search results for "Myogenin"
showing 6 items of 6 documents
Expression of the rat connexin 39 (rCx39) gene in myoblasts and myotubes in developing and regenerating skeletal muscles: an in situ hybridization st…
2005
We report a detailed analysis of the expression pattern of the recently identified rat connexin gene, named rat connexin 39 (rCx39), both during embryonic development and in adult life. Qualitative and quantitative reverse transcription/polymerase chain reaction analysis showed intense expression of rCx39 restricted to differentiating skeletal muscles, with a peak of expression detected at 18 days of embryonic life, followed by a rapid decline to undetectable levels within the first week of postnatal life. A combination of the in situ hybridization technique for the detection of rCx39 mRNA and immunohistochemistry for myogenin, a myoblast-specific marker, allowed us to establish that the mR…
Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy
2019
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease caused by an abnormal (GCN) triplet expansion within the polyadenylate-binding protein nuclear 1 gene and consequent mRNA pr...
Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'
2006
Mutations in dysferlin cause a type of muscular dystrophy known as dysferlinopathy. Dysferlin may be involved in muscle repair and differentiation. We compared normal human skeletal muscle cultures expressing dysferlin with muscle cultures from dysferlinopathy patients. We quantified the fusion index of myoblasts as a measure of muscle development and conducted optic and electronic microscopy, immunofluorescence, Western blot, flow cytometry, and real-time PCR at different developmental stages. Short interference RNA was used to corroborate the results obtained in dysferlin-deficient cultures. A luciferase reporter assay was performed to study myogenin activity in dysferlin-deficient cultur…
Resveratrol initiates differentiation of mouse skeletal muscle-derived C2C12 myoblasts.
2012
Resveratrol is one of the most widely studied bio-active plant polyphenols. While its effect on endothelial blood vessel cells, cancer cells, inflammatory processes and neurodegenerative events is well documented, little is known about the implication of this phytophenol in differentiating processes, particularly in skeletal muscle cells. Here, we report the effects of resveratrol on mouse skeletal muscle-derived cells (C2C12) in either a nondifferentiated (myoblasts) or differentiated state (myotubes) by evaluating resveratrol uptake, cell proliferation, changes in cell shape, and the expression of genes encoding muscle-specific transcription factors or contractile proteins. Resveratrol: (…
Down-regulation of transcription factors AP-1, Sp-1, and NF-kappa B precedes myocyte differentiation.
1996
Terminal differentiation of myocytes involves withdrawal from the cell cycle, induction of myogenin expression, and finally formation of myotubes. To study the factors that regulate the initial phase of muscle differentiation, we analyzed the binding activities of transcription factors AP-1, Sp-1, and NF-kappa B in L6, C2C12, and rhabdomyosarcoma BA-Han-1C cells. Temporal changes in transcription factor binding activities were compared to the activation of myogenin promoter-driven CAT reporter gene and the expression level of myogenin, a master gene of myogenic differentiation. We observed a prominent decrease in the nuclear binding activities of AP-1, Sp-1, and NF-kappa B already 12 to 24 …
Postexercise myostatin and activin IIb mRNA levels: effects of strength training.
2007
ABSTRACTHULMI, J. J., J. P. AHTIAINEN, T. KAASALAINEN, E. PO¨LLA¨NEN, K. HA¨KKINEN, M. ALEN, H. SELA¨NNE, V. KOVANEN,and A. A. MERO. Postexercise Myostatin and Activin IIb mRNA Levels: Effects of Strength Training. Med. Sci. Sports Exerc., Vol.39, No. 2, pp. 289–297, 2007. Purpose: Muscle hypertrophy is likely to result from the cumulative effects of repeated bouts ofresistance exercise (RE) on postexercise molecular responses. Therefore, we determined muscle growth- and regeneration-relatedmRNA expression in response to a single RE bout both before and after a strength-training (ST) period. By means of this novellongitudinal setting, we examined whether postexercise gene expression at the …