Search results for "N-doping"

showing 4 items of 4 documents

Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition

2010

Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…

AnataseMaterials scienceSettore ING-IND/22 - Scienza e Tecnologia dei MaterialiNanotechnologyCathodoluminescenceChemical vapor depositionNANOWIRESNANOSTRUCTURESZN-DOPINGTITANIA; ELECTROSPINNING; NANOFIBERS; CHEMICAL VAPOUR DEPOSITION ZN-DOPINGROUTEXPSGeneral Materials ScienceMetalorganic vapour phase epitaxyZINC-OXIDENanocompositeDopantELECTROSPINNINGPHOTOCATALYTIC ACTIVITYGeneral ChemistryOPTICAL-PROPERTIESCondensed Matter PhysicsNANOCOMPOSITESElectrospinningCHEMICAL VAPOUR DEPOSITIONNanofiberTITANIAPHOTOLUMINESCENCESENSITIZED SOLAR-CELLSSENSITIZED SOLAR-CELLS; ZINC-OXIDE; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; PHOTOLUMINESCENCE; NANOSTRUCTURES; NANOCOMPOSITES; NANOWIRES; ROUTE; XPSNANOFIBERS
researchProduct

Boron doping of silicon rich carbides: Electrical properties

2013

Boron doped multilayers based on silicon carbide/silicon rich carbide, aimed at the formation of silicon nanodots for photovoltaic applications, are studied. X-ray diffraction confirms the formation of crystallized Si and 3C-SiC nanodomains. Fourier Transform Infrared spectroscopy indicates the occurrence of remarkable interdiffusion between adjacent layers. However, the investigated material retains memory of the initial dopant distribution. Electrical measurements suggest the presence of an unintentional dopant impurity in the intrinsic SiC matrix. The overall volume concentration of nanodots is determined by optical simulation and is shown not to contribute to lateral conduction. Remarka…

Silicon nanodotMaterials scienceSiliconSilicon dioxideBoron dopingInorganic chemistrychemistry.chemical_elementSilicon carbide02 engineering and technologySettore ING-INF/01 - Elettronica7. Clean energy01 natural sciencesSettore FIS/03 - Fisica Della MateriaCarbidechemistry.chemical_compoundUV-vis reflection and transmittanceMultilayer0103 physical sciencesSilicon carbideGeneral Materials ScienceElectrical measurementsSilicon rich carbide010302 applied physicsDopantbusiness.industryMechanical EngineeringDopingFourier transform infrared spectroscopySilica021001 nanoscience & nanotechnologyCondensed Matter PhysicsSilicon richOptical propertieElectrical transportchemistryMechanics of MaterialsUV-vis reflection and transmittance Doping (additives)Boron-dopingOptoelectronicsElectric propertieNanodot0210 nano-technologybusinessX ray diffraction Boron carbideMaterials Science and Engineering: B
researchProduct

Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and …

2022

Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of …

graphene quantum dots3-amino-124-triazolegamma-irradiationGeneral Chemical Engineeringgraphene quantum dots; N-doping; gamma-irradiation; photoluminescence; carbofuran; 3-amino-124-triazole; detection; antibacterial effectsdetectionGeneral Materials Sciencephotoluminescenceantibacterial effectsSettore CHIM/02 - Chimica FisicaN-dopingcarbofuranNanomaterials (Basel, Switzerland)
researchProduct

Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots.

2022

Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with…

antioxidantgraphene quantum dotsGraphene quantum dotsGamma-irradiationPhotodynamic therapygraphene quantum dots; N-doping; gamma-irradiation; photoluminescence; photodynamic therapy; antioxidant; antibacterial effectsphotodynamic therapygamma-irradiationAntibacterial effectsantibacterial effectsphotoluminescenceGeneral Materials ScienceAntioxidantPhotoluminescenceSettore CHIM/02 - Chimica FisicaN-dopingMaterials (Basel, Switzerland)
researchProduct