Search results for "NANOCLUSTERS"
showing 10 items of 164 documents
Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes
2021
AbstractCopper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations. Nevertheless, poor stability of the species severely hinders its isolation, storage and operation, which is worse for nano-sized ones. We report here an unprecedented strategy to access to ultrastable copper-hydride nanoclusters (NCs), namely, using bidentate N-heterocyclic carbenes as stabilizing ligands in addition to thiolates. In this work, a simple synthetic protocol was developed to synthesize the first large copper-hydride nanoclusters (NCs) stabilized by N-heterocyclic carbenes (NHCs). The NC, with the formula of Cu31(RS)2…
Thiol-Stabilized Atomically Precise, Superatomic Silver Nanoparticles for Catalyzing Cycloisomerization of Alkynyl Amines
2018
Abstract Both the electronic and surface structures of metal nanomaterials play critical roles in determining their chemical properties. However, the non-molecular nature of conventional nanoparticles makes it extremely challenging to understand the molecular mechanism behind many of their unique electronic and surface properties. In this work, we report the synthesis, molecular and electronic structures of an atomically precise nanoparticle, [Ag206L72]q (L = thiolate, halide; q = charge). With a four-shell Ag7@Ag32@Ag77@Ag90 Ino-decahedral structure having a nearly perfect D5h symmetry, the metal core of the nanoparticle is co-stabilized by 68 thiolate and 4 halide ligands. Both electroche…
Ag44(EBT)26(TPP)4 Nanoclusters with Tailored Molecular and Electronic Structure
2021
Although atomically precise metalloid nanoclusters (NCs) of identical size with distinctly different molecular structures are highly desirable to understand the structural effects on the intriguing optical and photophysical properties, their synthesis remains highly challenging. Herein, we employed phosphine and thiol capping ligands featuring appropriate steric effects and synthesized a charge‐neutral Ag NC with the formula, Ag 44 (EBT) 26 (TPP) 4 (EBT: 2‐ethylbenzenethiolate; TPP: triphenylphosphine). The single‐crystal X‐ray structure reveals that this NC has a hollow metal core of Ag 12 @Ag 20 and a metal‐ligand shell of Ag 12 (EBT) 26 (TPP) 4 . The presence of mixed ligands and long V‐…
Electronic shell structures in bare and protected metal nanoclusters
2016
This short review discusses the concept of the electronic shell structure in the context of metal nanoclusters. Electronic shell structure is a natural consequence of quantization of fermionic states in a quantum confinement, where the symmetry of the confining potential creates energetically close-lying sets of states that reflect the symmetry of the potential. It was introduced in cluster physics in early 1980s and initially influenced greatly by the related model of nuclear shell structure from 1950’s. Three application areas are discussed consisting of free gas phase clusters, clusters supported by insulating oxides or oxide thin films, and clusters that are synthesized by wet chemistry…
[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster
2016
Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…
Bulky Surface Ligands Promote Surface Reactivities of [Ag141X12(S-Adm)40]3+ (X=Cl, Br, I) Nanoclusters: Models for Multiple-Twinned Nanoparticles
2017
Surface ligands play important roles in controlling the size and shape of metal nanoparticles and their surface properties. In this work, we demonstrate that the use of bulky thiolate ligands, along with halides, as the surface capping agent promotes the formation of plasmonic multiple-twinned Ag nanoparticles with high surface reactivities. The title nanocluster [Ag141X12(S-Adm)40]3+ (where X = Cl, Br, I; S-Adm = 1-adamantanethiolate) has a multiple-shell structure with an Ag71 core protected by a shell of Ag70X12(S-Adm)40. The Ag71 core can be considered as 20 frequency-two Ag10 tetrahedra fused together with a dislocation that resembles multiple-twinning in nanoparticles. The nanocluster…
Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis
2019
Water-soluble gold nanoclusters with well-defined molecular structures and stability possess particular biophysical properties making them excellent candidates for biological applications as well as for fundamental spectroscopic studies. The currently existing synthetic protocols for atomically monodisperse thiolate-protected gold nanoclusters (AuMPCs) have been widely expanded with organothiolates, yet the direct synthesis reports for water-soluble AuMPCs are still deficient. Here, we demonstrate a wet-chemistry pH-controlled synthesis of two large water-soluble nanoclusters utilizing p-mercaptobenzoic acid (pMBA), affording different sizes of plasmonic AuMPCs on the preparative scale (∼7 …
Theoretical Analysis of the M12Ag32(SR)404– and X@M12Ag32(SR)304– Nanoclusters (M = Au, Ag; X = H, Mn)
2014
We analyze the electronic structure and optical properties of the recently reported, structurally known M12Ag32(SR)304– clusters (M = Au, Ag) by using density functional theory and time-dependent density functional perturbation theory. Effects of the chemical changes in the metal core, charge of the cluster, and nature of the thiolate ligand on the electronic structure and optical absorption are reported. In addition, doping the metal core with a magnetic transition metal atom (Mn) or hydrogen (protons) is discussed. Although all these clusters can be considered as 18-electron superatoms with a shell configuration 1S2 1P6 1D10, we find that the optical spectrum is sensitive to the charge st…
Jahn–Teller effects in Au25(SR)18
2016
The relationship between oxidation state, structure, and magnetism in many molecules is well described by first-order Jahn–Teller distortions. This relationship is not yet well defined for ligated nanoclusters and nanoparticles, especially the nano-technologically relevant gold-thiolate protected metal clusters. Here we interrogate the relationships between structure, magnetism, and oxidation state for the three stable oxidation states, −1, 0 and +1 of the thiolate protected nanocluster Au25(SR)18. We present the single crystal X-ray structures of the previously undetermined charge state Au25(SR)18+1, as well as a higher quality single crystal structure of the neutral compound Au25(SR)180. …
Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters
2015
With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In both clusters, a M@Ag12 (M = Pd, Pt) core is capped by six distorted dimeric -RS-Ag-SR-Ag-SR- units. However, the silver-thiolate overlayer gives rise to a geometric chirality at variance to Au25(SR)18. The effect of doping on the electronic structure was studied through measured optical absorption spectra and ab initio analysis. This work d…