Search results for "NANOFIBERS"

showing 10 items of 42 documents

Crosslinked Sulfonated Poly(vinyl alcohol)/Graphene Oxide Electrospun Nanofibers as Polyelectrolytes

2019

[EN] Taking advantage of the high functionalization capacity of poly(vinyl alcohol) (PVA), bead-free homogeneous nanofibrous mats were produced. The addition of functional groups by means of grafting strategies such as the sulfonation and the addition of nanoparticles such as graphene oxide (GO) were considered to bring new features to PVA. Two series of sulfonated and nonsulfonated composite nanofibers, with different compositions of GO, were prepared by electrospinning. The use of sulfosuccinic acid (SSA) allowed crosslinked and functionalized mats with controlled size and morphology to be obtained. The functionalization of the main chain of the PVA and the determination of the optimum co…

Proton conductivityVinyl alcoholSolucions polimèriquesMaterials scienceGeneral Chemical EngineeringGraphene oxide (GO)Poly(vinyl alcohol) (PVA)law.inventionlcsh:Chemistrychemistry.chemical_compoundcrosslinkedlawnanofibersCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAGeneral Materials Sciencechemistry.chemical_classificationNanotecnologiaGraphenePolymerCiència dels materialsPolyelectrolytePolyelectrolyteElectrospinningMembranelcsh:QD1-999CrosslinkednanofiberschemistryChemical engineeringNanofiberMAQUINAS Y MOTORES TERMICOSSurface modificationNanomaterials
researchProduct

Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…

2014

Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…

ScaffoldBiocompatibilityPolyestersNanofibersOsteoclastsNanotechnologyBiocompatible MaterialsApplied Microbiology and BiotechnologyMineralization (biology)chemistry.chemical_compoundCalcification PhysiologicOsteoclastCell Line TumormedicineHumansNanotechnologySaos-2 cellsCell ProliferationTissue ScaffoldsChemistrytechnology industry and agricultureGeneral MedicineSilicon DioxideElectrospinning3. Good healthTetraethyl orthosilicatemedicine.anatomical_structureChemical engineeringNanofiberMolecular MedicineBiotechnologyBiotechnology journal
researchProduct

Nanofibrous Polymeric Membranes for Air Filtration Application: A Review of Progress after the COVID‐19 Pandemic

2023

Air pollution is one of the major global problems causing around 7 million dead per year. In fact, a connection between infectious disease transmission, including COVID-19, and air pollution has been proved: COVID-19 consequences on human health are found to be more severe in areas characterized by high levels of particulate matter (PM). Therefore, after the COVID-19 pandemic, the production of air filtration devices with high filtration efficiency has gained more and more attention. Herein, a review of the post-COVID-19 pandemic progress in nanofibrous polymeric membranes for air filtration is provided. First, a brief discussion on the different types of filtration mechanism and the key pa…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemical EngineeringOrganic Chemistryair filtration air pollution COVID-19 fibers nanofibers membranes particulate matter polymeric membranesMaterials ChemistryMacromolecular Materials and Engineering
researchProduct

Physical and biological properties of electrospun poly(d,l‐lactide)/nanoclay and poly(d,l‐lactide)/nanosilica nanofibrous scaffold for bone tissue en…

2021

Abstract Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrat…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsPolyesterstechnology industry and agricultureNanofibersSettore ING-IND/34 - Bioingegneria Industrialenanosilicapre‐osteoblastic cellsBone and BonesCell LineNanocompositesnanoclayMiceSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiOsteogenesispre-osteoblastic cellsAnimalspolylactic acidResearch ArticleselectrospinningResearch ArticleJournal of Biomedical Materials Research. Part a
researchProduct

Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wo…

2022

Here we reported the fabrication of an electrospun membrane based on a hyaluronic acid derivative (HA-EDA) to be used as a bandage for the potential treatment of chronic wounds. The membrane, loaded with graphene oxide (GO) and ciprofloxacin, showed photothermal properties and light-triggered drug release when irradiated with a near-infrared (NIR) laser beam. Free amino groups of HA-EDA derivative allowed autocrosslinking of the elec- trospun membrane; thus, a substantial enhancement in the hydrolytic resistance of the patch was obtained. In vitro antibacterial activity studies performed on Staphylococcus aureus and Pseudomonas aeruginosa revealed that such electrospun membranes, due to the…

Staphylococcus aureusGeneral MedicineStaphylococcal InfectionsBiochemistryHyaluronan derivative Graphene oxide Nanofibers AntibiofilmAnti-Bacterial AgentsStructural BiologySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPseudomonas aeruginosaWound InfectionHumansGraphiteHyaluronic AcidMolecular BiologyInternational journal of biological macromolecules
researchProduct

Novel method for functionalising and patterning textile composites:Liquid resin print

2016

Abstract The paper reports a novel method of integrating resin into continuous textile reinforcement. The method presents a print of liquid reactive resin into textile preforms. A series of targeted injections forms a patch which upon consolidation and curing transforms into a stiff region continuously spanning through preform thickness. Enhancing the injected resin with conductive phase allows creating a pattern of patches with controlled dimensions and added functionalities. Patterned composites reveal features which are not typical for conventional composites such as fibre bridged interfaces, regular thickness variation, and gradient matrix properties. The presented study explores the ro…

Textile reinforcementA. Multifunctional compositesMaterials sciencetechnology industry and agricultureElectrically conductiveE. 3-D printingLiquid resin02 engineering and technologyBristol Composites Institute ACCIS010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesA. Carbon nanotubes and nanofibers0104 chemical sciencesMechanics of MaterialsCeramics and CompositesSurface modificationTextile compositeComposite materialB. Electrical properties0210 nano-technology/dk/atira/pure/core/keywords/composites_SRIElectrical conductorCuring (chemistry)
researchProduct

Nexus of Electrospun Nanofibers and Additive Processing—Overview of Wearable Tactical Gears for CBRNE Defense

2021

Due to complex nature of twenty-first century battlefield, soldiers must perform multiple tasks to protect nations while maintaining their own safety. Advances in technological innovations are critical to support such functionalities to enhance safety and security. Using nexus of electrospinning and additive processing, we present how recent developments can be used to produce new generation of protective fabrics with integrative force protection, sensing/detection of chemical, biological, radiological, nuclear, and high yield explosives (CBRNE), and biomedical functionalities. Although electrospinning has been in use for some time, the special blends and configurations of nanofibers, as de…

Uv protectionScaffoldComputer scienceElectrospun nanofibersNanofiberWearable computerNanotechnologyForce protectionNexus (standard)Electrospinning
researchProduct

Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoindu…

2020

Item does not contain fulltext The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DD(EDA) mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded…

Whole membraneBone RegenerationDexamethasone; Electrospun nanofibers; GBR membranes; Hyaluronic acid alkylated.Nanofibers02 engineering and technologyHyaluronic acid alkylated01 natural sciencesPolyvinyl alcoholDexamethasoneGBR membranesHydrolysischemistry.chemical_compoundColloid and Surface ChemistryOsteogenesis0103 physical sciencesPhysical and Theoretical ChemistryHyaluronic AcidBone regenerationAlkylchemistry.chemical_classificationAqueous solutionMembranesElectrospun nanofibers010304 chemical physicsCyclodextrinMembranes ArtificialSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologyReconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]Membranechemistry0210 nano-technologyBiotechnologyNuclear chemistry
researchProduct

Black Bioinks from Superstructured Carbonized Lignin Particles

2023

A renewable source of carbon black is introduced by the processing of lignin from agro-forestry residues. Lignin side streams are converted into spherical particles by direct aerosolization followed by carbonization. The obtained submicron black carbon is combined with cellulose nanofibers, which act as a binder and rheology modifier, resulting in a new type of colloidal bioink. The bioinks are tested in handwriting and direct ink writing. After consolidation, the black bioinks display total light reflectance (%R) at least three times lower than commercial black inks (reduction from 12 to 4%R). A loading of up to 20% of nanofibers positively affects the cohesion of the dried bioink (1 to 16…

carbon materialsparticlenetworkspigmentshiiliselluloosacarbonizationnanotekniikkacoatingskoksauscellulose nanofibers
researchProduct

Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds

2021

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing shou…

dressingMedicine (miscellaneous)wound healingInflammationReviewfibersMatrix metalloproteinaseMicrobiologyExtracellular matrixWound careDermisIn vivonanofibersmedicinealginateintegumentary systembusiness.industryRbiomaterialmedicine.anatomical_structureSelf-healing hydrogelsMedicinehydrogelmedicine.symptombusinessWound healingcommercially availablewound careJournal of Personalized Medicine
researchProduct