Search results for "NAS"

showing 10 items of 12064 documents

Impact of Bacterial Siderophores on Iron Status and Ionome in Pea

2020

National audience; Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability. There is growing evidence that plant microbiota contribute to plant iron nutrition and might account for variations in the sensitivity of pe…

0106 biological sciences0301 basic medicineSiderophoresiderophorepeaPlant ScienceBiologylcsh:Plant cultureIron defciency01 natural sciences03 medical and health scienceschemistry.chemical_compoundiron deficiencyPseudomonasplant iron nutritionlcsh:SB1-1110CultivarIron deficiency (plant disorder)LegumeOriginal Research2. Zero hungerRhizosphereChlorosisPyoverdinepyoverdinefood and beverages15. Life on landHorticulture030104 developmental biologychemistry[SDE]Environmental SciencesIDCIonomics010606 plant biology & botanyFrontiers in Plant Science
researchProduct

RNA uridylation and decay in plants

2018

RNA uridylation consists of the untemplated addition of uridines at the 3′ extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana . Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include …

0106 biological sciences0301 basic medicineSmall interfering RNATerminal nucleotidyltransferaseRNA StabilitymRNAArabidopsisChlamydomonas reinhardtiiUridylationBiology01 natural sciencesRNA decayGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesRNA degradationSettore AGR/07 - Genetica AgrariamicroRNAGene silencing[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyUridineComputingMilieux_MISCELLANEOUSPolymerase2. Zero hungerMessenger RNABiochemistry Genetics and Molecular Biology (all)fungiRNAfood and beverages[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyArticlesPlantsRibosomal RNAbiology.organism_classificationCell biology030104 developmental biologyAgricultural and Biological Sciences (all)biology.proteinRNARNA InterferenceGeneral Agricultural and Biological SciencesChlamydomonas reinhardtii010606 plant biology & botany
researchProduct

Evaporation from soils of different texture covered by layers of water repellent and wettable soils

2020

Water repellent soils are able to channel water deep into the soil profile by fingered flow, minimising water storage in the water repellent top layer where water is most susceptible to evaporation. To date, the effect of water repellent or wettable surface layer on evaporation from wet sublayer has only been reported for coarse materials, and an increase in water repellency led to a greater delay in water evaporation. The objective of this study was to assess the effect of water repellent vs. wettable top layers with different thickness on water evaporation from coarse and fine texture subsoils that were pre-moistened. Clay loam soil samples were taken from Pinus pinaster woodland of Ciavo…

0106 biological sciences0301 basic medicineSoil testSettore AGR/13 - Chimica AgrariaEvaporationEvaporationDuffSoil sciencePlant Science01 natural sciencesBiochemistry03 medical and health sciencesSoilGeneticsSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliSurface layerMolecular BiologyEcology Evolution Behavior and SystematicsbiologyWater storageCell Biologybiology.organism_classificationPineWater repellency030104 developmental biologyLoamSoil waterEnvironmental sciencePinus pinasterSoil horizonAnimal Science and Zoology010606 plant biology & botany
researchProduct

Maritime Pine Pinus Pinaster Aiton

2018

Maritime pine (Pinus pinaster Aiton) is the most abundant conifer in the Mediterranean basin. Currently, maritime pine is considered to be a model conifer species for study of the adaption responses to drought stress from a genomics approach. In this context, the availability of protocols that allow not only mass vegetative propagation of selected families or genotypes, but also facilitate the functional analyses needed to verify and further to study the effects of candidate genes are necessary. Here we describe an improved protocol to generate maritime pine plants through somatic embryogenesis from immature megagametophytes. Accurate procedures for explant preparation, somatic embryo induc…

0106 biological sciences0301 basic medicineSomatic embryogenesisVegetative reproductionfungifood and beveragesContext (language use)Biologybiology.organism_classification01 natural sciencesAcclimatizationMediterranean Basin03 medical and health sciences030104 developmental biologyGerminationBotanyPinus pinaster010606 plant biology & botanyExplant culture
researchProduct

Production of extracellular fructans by Gluconobacter nephelii P1464.

2015

UNLABELLED Bacterial extracellular fructans, known as levans, have potential applications in food, pharmaceutical and cosmetic industries and high fructan producing strains could contribute into the cost reduction and more extensive commercial usage of them. An acetic acid bacteria (AAB) isolate P1464 was obtained from the Microbial Strain Collection of Institute of Microbiology and Biotechnology, University of Latvia and identified as Gluconobacter nephelii by DNA-DNA hybridization and the formation of extracellular fructans by this strain was confirmed. Isolated extracellular fructose polymers were characterized using FT-IR spectroscopy and the structural features of fructan appeared as s…

0106 biological sciences0301 basic medicineSucroseGluconobactermedicine.medical_treatment030106 microbiologyGluconobacterFructose01 natural sciencesApplied Microbiology and BiotechnologyZymomonas mobilis03 medical and health scienceschemistry.chemical_compoundFructanBioreactors010608 biotechnologySpectroscopy Fourier Transform InfraredExtracellularmedicineAcetic acid bacteriaAcetic AcidbiologyPrebioticPolysaccharides BacterialFructosebiology.organism_classificationDNA FingerprintingFructansMolecular WeightchemistryBiochemistryLetters in applied microbiology
researchProduct

Tubercle disease (Xanthomonas beticola) and other gall-malformed diseases of sugar beet roots: a review

2016

The sugar beet (Beta vulgaris) is an important plant in agriculture and sugar industry, and it is widely cultivated in European countries. Getting proper raw material of sugar beets (roots) is a problem for agriculture. Some disease symptoms observed on sugar beet roots are atypical tumor-like deformations. The causative agent of these deformations is known in the old literature as Xanthomonas beticola. The disease’s name in Poland is “tuberkuloza” and in the USA it refers to a description of a pocket disease—therefore we may consider those diseases to be the same. The clear description of X. beticola disease can be found in many phytopathological manuals printed in the past and nowadays. S…

0106 biological sciences0301 basic medicinegallbiologyTubercle030106 microbiologySugar industrysugar beetPlant ScienceDiseaseXanthomonas beticolaHorticulturebiology.organism_classification01 natural sciencesToxicology03 medical and health sciencesXanthomonasBotanyGallSugar beetSugarCausal organismAgronomy and Crop Science010606 plant biology & botanyJournal of Plant Diseases and Protection
researchProduct

Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas

2017

Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the …

0106 biological sciences0301 basic medicinehiilidioksidiEpigenomicsAdaptation Biological01 natural sciencestolerance (physical)Epigenesis GeneticEpigenomicssietokyky2. Zero hungerGeneticsExperimental evolutionepigeneettinen periytyminenSalt Tolerancegreen algaeAdaptation PhysiologicalHistoneDNA methylationepigenetic inheritancephosphate starvationBiologyEnvironment010603 evolutionary biologysuolapitoisuus03 medical and health sciencesviherlevätGenetic variationGeneticsEpigeneticssalt contentexperimental evolutionravinnepitoisuusMolecular BiologyGeneEcology Evolution Behavior and Systematicssalt tolerancefosfaatitta1183ChlamydomonasGenetic Variationadaptive walkcarbon dioxideDNA Methylation030104 developmental biologyepigenetic mutationMutationbiology.proteinta1181methylationAdaptationDirected Molecular EvolutionChlamydomonas reinhardtii
researchProduct

Genetic diversity of Rhizoctonia solani associated with potato tubers in France.

2011

Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699; International audience; The soilborne fungus Rhizoctonia solani is a pathogen of many plants and causes severe damage in crops around the world. Strains of R. solani from the anastomosis group (AG) 3 attack potatoes, leading to great yield losses and to the downgrading of production. The study of the genetic diversity of the strains of R. solani in France allows the structure of the populations to be determined and adapted control strategies against this pathogen to be established. …

0106 biological sciences0301 basic medicineinternal transcribed spacer polymorphic sitePhysiologyMolecular Sequence Dataanastomosis groupBiology010603 evolutionary biology01 natural sciencesamplified fragment length polymorphismRhizoctoniaRhizoctonia solani03 medical and health sciencesGenetic variationBotanyDNA Ribosomal SpacerGeneticsInternal transcribed spacerAmplified Fragment Length Polymorphism AnalysisMolecular BiologyEcology Evolution Behavior and Systematics[SDV.MP.MYC]Life Sciences [q-bio]/Microbiology and Parasitology/MycologyPhylogenySolanum tuberosum2. Zero hungerGeneticsGenetic diversityPhylogenetic treeBase SequenceRhizoctonia solanifood and beveragesGenetic VariationCell BiologyGeneral Medicine030108 mycology & parasitologyRibosomal RNAbiology.organism_classificationelongation factorDNA profilingpotatoAmplified fragment length polymorphismFranceanastamoseMycologia
researchProduct

Characterization of the Heme Pocket Structure and ligand binding kinetics of non-symbiotic hemoglobins from the model legume Lotus japonicus

2017

14 Pags.- 6 Figs. This article is part of the Research Topic: Advances in legume research ( http://journal.frontiersin.org/researchtopic/4288/advances-in-legume-research ). Copyright of the Authors through a Creative Commons Attribution License. This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.

0106 biological sciences0301 basic medicineligand bindingLotus japonicusMutantPlant Science01 natural sciencesheme cavity03 medical and health scienceschemistry.chemical_compoundnon-symbiotic hemoglobinsBiologyHemebiologyChemistryNitrosylationHexacoordinateNitric oxide dioxygenaseLigand (biochemistry)biology.organism_classificationAffinitiesChemistry030104 developmental biologyBiochemistryLotus japonicusnitric oxide dioxygenase010606 plant biology & botany
researchProduct

New Approaches to Optimize Somatic Embryogenesis in Maritime Pine

2019

Maritime pine (Pinus pinaster Aiton) is a coniferous native of the Mediterranean basin. Because of its adaptability to a wide range of environmental conditions, the species have become a model for studies in coniferous forest management and functional genomics. Somatic embryogenesis (SE) has been so far, the preferred biotechnological strategy for maritime pine breeding programs initiated at the middle-end of the 20th century. To overcome the limitations of the induction and maturation phases in maritime pine SE, we analyzed the possible maternal influence on the embryogenic capability of megagametophytes from controlled crosses, as well as the effect of the temperature and water availabili…

0106 biological sciences0301 basic medicinematernal effectWOX2Somatic embryogenesisSomatic cellPlant ScienceBiologywater availabilitylcsh:Plant culture01 natural sciencesMediterranean Basin03 medical and health scienceslcsh:SB1-1110hormone contentOriginal ResearchLEC1Embryogenesisfungiembryo maturationMaternal effectfood and beveragestemperatureEmbryobiology.organism_classificationHorticulture030104 developmental biologyGerminationgene expressionPinus pinaster010606 plant biology & botanyFrontiers in Plant Science
researchProduct