Search results for "NEURAL NETWORK"
showing 10 items of 1385 documents
Biometric Fish Classification of Temperate Species Using Convolutional Neural Network with Squeeze-and-Excitation
2019
Our understanding and ability to effectively monitor and manage coastal ecosystems are severely limited by observation methods. Automatic recognition of species in natural environment is a promising tool which would revolutionize video and image analysis for a wide range of applications in marine ecology. However, classifying fish from images captured by underwater cameras is in general very challenging due to noise and illumination variations in water. Previous classification methods in the literature relies on filtering the images to separate the fish from the background or sharpening the images by removing background noise. This pre-filtering process may negatively impact the classificat…
Benchmark database for fine-grained image classification of benthic macroinvertebrates
2018
Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…
Temperate Fish Detection and Classification: a Deep Learning based Approach
2021
A wide range of applications in marine ecology extensively uses underwater cameras. Still, to efficiently process the vast amount of data generated, we need to develop tools that can automatically detect and recognize species captured on film. Classifying fish species from videos and images in natural environments can be challenging because of noise and variation in illumination and the surrounding habitat. In this paper, we propose a two-step deep learning approach for the detection and classification of temperate fishes without pre-filtering. The first step is to detect each single fish in an image, independent of species and sex. For this purpose, we employ the You Only Look Once (YOLO) …
Identifying small pelagic Mediterranean fish schools from acoustic and environmental data using optimized artificial neural networks
2019
Abstract The Common Fisheries Policy of the European Union aims to exploit fish stocks at a level of Maximum Sustainable Yield by 2020 at the latest. At the Mediterranean level, the General Fisheries Commission for the Mediterranean (GFCM) has highlighted the importance of reversing the observed declining trend of fish stocks. In this complex context, it is important to obtain reliable biomass estimates to support scientifically sound advice for sustainable management of marine resources. This paper presents a machine learning methodology for the classification of pelagic species schools from acoustic and environmental data. In particular, the methodology was tuned for the recognition of an…
Protocol for the Definition of a Multi-Spectral Sensor for Specific Foliar Disease Detection: Case of “Flavescence Dorée”
2018
Flavescence Doree (FD) is a contagious and incurable grapevine disease that can be perceived on leaves. In order to contain its spread, the regulations obligate winegrowers to control each plant and to remove the suspected ones. Nevertheless, this monitoring is performed during the harvest and mobilizes many people during a strategic period for viticulture. To solve this problem, we aim to develop a Multi-Spectral (MS) imaging device ensuring an automated grapevine disease detection solution. If embedded on a UAV, the tool can provide disease outbreaks locations in a geographical information system allowing localized and direct treatment of infected vines. The high-resolution MS camera aims…
Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
2020
Abstract The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting…
FeatherCNN: Fast Inference Computation with TensorGEMM on ARM Architectures
2020
Deep Learning is ubiquitous in a wide field of applications ranging from research to industry. In comparison to time-consuming iterative training of convolutional neural networks (CNNs), inference is a relatively lightweight operation making it amenable to execution on mobile devices. Nevertheless, lower latency and higher computation efficiency are crucial to allow for complex models and prolonged battery life. Addressing the aforementioned challenges, we propose FeatherCNN – a fast inference library for ARM CPUs – targeting the performance ceiling of mobile devices. FeatherCNN employs three key techniques: 1) A highly efficient TensorGEMM (generalized matrix multiplication) routine is app…
Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals
2020
Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows…
District heating networks: enhancement of the efficiency
2019
International audience; During the decades the district heating's (DH) advantages (more cost-efficient heat generation and reduced air pollution) overcompensated the additional costs of transmission and distribution of the centrally produced thermal energy to consumers. Rapid increase in the efficiency of low-power heaters, development of separated low heat density areas in cities reduce the competitiveness of the large centralized DH systems in comparison with the distributed cluster-size networks and even local heating. Reduction of transmission costs, enhancement of the network efficiency by optimization of the design of the DH networks become a critical issue. The methodology for determ…
Adaptive Robot Control – An Experimental Comparison
2012
This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with…