Search results for "NEURAL NETWORK"

showing 10 items of 1385 documents

A Neural Architecture for 3D Segmentation

2003

An original neural scheme for segmentation of range data is presented, which is part of a more general 3D vision system for robotic applications. The entire process relies on a neural architecture aimed to perform first order image irradiance analysis, that is local estimation of magnitude and orientation of the image irradiance gradient.

Artificial neural networkbusiness.industryOrientation (computer vision)Computer scienceNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)CurvatureEdge detectionRange (mathematics)Computer Science::Computer Vision and Pattern RecognitionComputer visionSegmentationArtificial intelligencebusiness
researchProduct

Classification of Satellite Images with Regularized AdaBoosting of RBF Neural Networks

2008

Artificial neural networkbusiness.industryPattern recognitionMachine learningcomputer.software_genreLinear discriminant analysisAdaboost algorithmSupport vector machineGeographySatelliteRadial basis functionArtificial intelligenceAdaBoostbusinesscomputer
researchProduct

A Memetic-Neural Approach to Discover Resources in P2P Networks

2008

This chapter proposes a neural network based approach for solving the resource discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local Memetic Algorithm (AGLMA) for performing in training of the neural network. The neural network, which is a multi-layer perceptron neural network, allows the P2P nodes to efficiently locate resources desired by the user. The necessity of testing the network in various working conditions, aiming to obtain a robust neural network, introduces noise in the objective function. The AGLMA is a memetic algorithm which employs two local search algorithms adaptively activated by an evolutionary framework. These local searchers, having different fe…

Artificial neural networkbusiness.industryProcess (engineering)Computer scienceComputer Science::Neural and Evolutionary ComputationComputational intelligencePeer-to-peercomputer.software_genrePerceptronMachine learningResource (project management)Memetic algorithmLocal search (optimization)Artificial intelligencebusinesscomputer
researchProduct

Two-level branch prediction using neural networks

2003

Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel solutions to the problem. In this paper, we examine the application of neural networks to dynamic branch prediction. We retain the first level history register of conventional two-level predictors and replace the second level PHT with a neural network. Two neural networks are considered: a learning vec…

Artificial neural networkbusiness.industryTime delay neural networkComputer scienceVector quantizationLearning vector quantisationBranch predictorMachine learningcomputer.software_genreBackpropagationApplication areasHardware and ArchitectureArtificial intelligenceHardware_CONTROLSTRUCTURESANDMICROPROGRAMMINGTime seriesbusinesscomputerSoftwareJournal of Systems Architecture
researchProduct

Recent advances in machine learning for maximal oxygen uptake (VO2 max) prediction : A review

2022

Maximal oxygen uptake (VO2 max) is the maximum amount of oxygen attainable by a person during exercise. VO2 max is used in different domains including sports and medical sciences and is usually measured during an incremental treadmill or cycle ergometer test. The drawback of directly measuring VO2 max using the maximal test is that it is expensive and requires a fixed and controlled protocol. During the last decade, various machine learning models have been developed for VO2 max prediction and numerous studies have attempted to predict VO2 max using data from submaximal and non-exercise tests. This article gives an overview of the machine learning models developed over the past five years (…

Artificial neural networkmallintaminenComputer applications to medicine. Medical informaticsR858-859.7ennusteetneuroverkotkuntotestitPrediction modelsError metricsmittaustekniikkafyysinen kuntokoneoppiminenGraded exercise testsMachine learningmaksimaalinen hapenottoMaximal oxygen uptake (VO2 max)
researchProduct

Short term wind speed prediction using Multi Layer Perceptron

2012

Among renewable energy sources wind energy is having an increasing influence on the supply of energy power. However wind energy is not a stationary power, depending on the fluctuations of the wind, so that is necessary to cope with these fluctuations that may cause problems the electricity grid stability. The ability to predict short-term wind speed and consequent production patterns becomes critical for the all the operators of wind energy. This paper studies several configurations of Artificial Neural Networks (ANN), a well-known tool able to estimate wind speed starting from measured data. The presented ANNs, t have been tested through data gathered in the area of Trapani (Sicily). Diffe…

Artificial neural networks Multi layer perceptron Feed forward network Forecasting Renewable energy Wind energy Wind speedSettore ING-IND/11 - Fisica Tecnica Ambientale
researchProduct

An Improved Load Flow Method for MV Networks Based on LV Load Measurements and Estimations

2019

A novel measurement approach for power-flow analysis in medium-voltage (MV) networks, based on load power measurements at low-voltage level in each secondary substation (SS) and only one voltage measurement at the MV level at primary substation busbars, was proposed by the authors in previous works. In this paper, the method is improved to cover the case of temporary unavailability of load power measurements in some SSs. In particular, a new load power estimation method based on artificial neural networks (ANNs) is proposed. The method uses historical data to train the ANNs and the real-time available measurements to obtain the load estimations. The load-flow algorithm is applied with the e…

Artificial neural networksBusbarComputer sciencepower system measurement020208 electrical & electronic engineeringArtificial neural networks (ANNs)power system managementpower measurementFlow method02 engineering and technologypower system measurementsload flow (LF)Power (physics)Control theoryload flowsmart grids0202 electrical engineering electronic engineering information engineeringstate estimationElectrical and Electronic Engineeringsmart gridInstrumentationSettore ING-INF/07 - Misure Elettriche E ElettronicheVoltage
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Simulating Actions with the Associative Self-Organizing Map

2013

We present a system that can learn to represent actions as well as to internally simulate the likely continuation of their initial parts. The method we propose is based on the Associative Self Organizing Map (A-SOM), a variant of the Self Organizing Map. By emulating the way the human brain is thought to perform pattern recognition tasks, the A- SOM learns to associate its activity with di erent inputs over time, where inputs are observations of other's actions. Once the A-SOM has learnt to recognize actions, it uses this learning to predict the continuation of an observed initial movement of an agent, in this way reading its intentions. We evaluate the system's ability to simulate actions …

Associative Self-Organizing Map Neural Network Action Recognition Internal Simulation Intention Understanding
researchProduct

Internal Simulation of an Agent’s Intentions

2013

We present the Associative Self-Organizing Map (A-SOM) and propose that it could be used to predict an agent’s intentions by internally simulating the behaviour likely to follow initial movements. The A-SOM is a neural network that develops a representation of its input space without supervision, while simultaneously learning to associate its activity with an arbitrary number of additional (possibly delayed) inputs. We argue that the A-SOM would be suitable for the prediction of the likely continuation of the perceived behaviour of an agent by learning to associate activity patterns over time, and thus a way to read its intentions.

Associative Self-Organizing Map; Internal Simulation;ContinuationArtificial neural networkbusiness.industryComputer scienceAssociative Self-Organizing MapRepresentation (systemics)Artificial intelligenceSpace (commercial competition)businessInternal SimulationAssociative property
researchProduct