Search results for "NEURAL NETWORK"

showing 10 items of 1385 documents

A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior.

2011

The neural mechanisms underlying schizophrenic behavior are unknown and very difficult to investigate experimentally, although a few experimental and modeling studies suggested possible causes for some of the typical psychotic symptoms related to this disease. The brain region most involved in these processes seems to be the hippocampus, because of its critical role in establishing memories for objects or events in the context in which they occur. In particular, a hypofunction of the N-methyl-D-aspartate (NMDA) component of the synaptic input on the distal dendrites of CA1 pyramidal neurons has been suggested to play an important role for the emergence of schizophrenic behavior. Modeling st…

Computer scienceCognitive Neurosciencemedia_common.quotation_subjectSchizophrenia Realistic model CA1 Hippocampus Object recognition Synaptic integrationCentral nervous systemModels NeurologicalCa1 neuronHippocampusHippocampal formationSynapse03 medical and health sciences0302 clinical medicineArtificial IntelligencePerceptionmedicineAnimalsHumansInvariant (mathematics)CA1 Region Hippocampal030304 developmental biologymedia_common0303 health sciencesRecallArtificial neural networkPyramidal NeuronSynaptic integrationPyramidal CellsCognitive neuroscience of visual object recognitionDendritesmedicine.diseasemedicine.anatomical_structurenervous systemSchizophreniaSynapsesSchizophreniaNMDA receptorNeuronNerve NetNeuroscience030217 neurology & neurosurgeryNeural networks : the official journal of the International Neural Network Society
researchProduct

Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks

2019

Psycho-acoustic parameters have been extensively used to evaluate the discomfort or pleasure produced by the sounds in our environment. In this context, wireless acoustic sensor networks (WASNs) can be an interesting solution for monitoring subjective annoyance in certain soundscapes, since they can be used to register the evolution of such parameters in time and space. Unfortunately, the calculation of the psycho-acoustic parameters involved in common annoyance models implies a significant computational cost, and makes difficult the acquisition and transmission of these parameters at the nodes. As a result, monitoring psycho-acoustic annoyance becomes an expensive and inefficient task. Thi…

Computer scienceComputationsubjective annoyanceContext (language use)Annoyance02 engineering and technologycomputer.software_genre01 natural sciencesConvolutional neural networklcsh:TechnologyReduction (complexity)lcsh:Chemistryconvolutional neural networks0202 electrical engineering electronic engineering information engineeringWirelessGeneral Materials Sciencewireless acoustic sensor networksInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrylcsh:TProcess Chemistry and Technology010401 analytical chemistryGeneral EngineeringRegression analysislcsh:QC1-9990104 chemical sciencesComputer Science Applicationspsycho-acoustic parametersTransmission (telecommunications)lcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040020201 artificial intelligence & image processingData miningbusinesslcsh:Engineering (General). Civil engineering (General)Zwicker modelcomputerlcsh:PhysicsApplied Sciences
researchProduct

A Wavelet approach to extract main features from indirect immunofluorescence images

2019

A number of previous studies have shown that IIF image analysis requires complex and sometimes heterogeneous and diversified methods. Robust solutions can be proposed but they need to orchestrate several methods from low-level analysis up to more complex neural networks or SVM for data classification. The contribution intends to highlight the versatility of Wavelet Transform (WT) and their use in various levels of analysis for the classification of IIF images in order to develop a system capable of performing: image enhancement, ROI segmentation and object classification. Therefore, WT was adopted in the de-noise section, segmentation and classification. This analysis allows frequencies cha…

Computer scienceData classificationWavelet Transform02 engineering and technologyPattern Recognition030218 nuclear medicine & medical imaging03 medical and health sciencesSegmentation0302 clinical medicineWaveletRobustness (computer science)IIF dataset0202 electrical engineering electronic engineering information engineeringSegmentationMedical diagnosisSettore INF/01 - InformaticaArtificial neural networkbusiness.industryDenoiseWavelet transformPattern recognitionClassificationSupport vector machine020201 artificial intelligence & image processingArtificial intelligencebusinessProceedings of the 20th International Conference on Computer Systems and Technologies
researchProduct

Towards a Hierarchical Multitask Classification Framework for Cultural Heritage

2018

Digital technologies such as 3D imaging, data analytics and computer vision opened the door to a large set of applications in cultural heritage. Digital acquisition of a cultural assets takes nowadays a couple of seconds thanks to the achievements in 2D and 3D acquisition technologies. However, enriching these cultural assets with labels and relevant metadata is still not fully automatized especially due to their nature and specificities. With the recent publication of several cultural heritage datasets, many researchers are tackling the challenge of effectively classifying and annotating digital heritage. The challenges that are often addressed are related to visual recognition and image c…

Computer scienceData field02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Multitask ClassificationCultural diversity0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Digital preservationComputingMilieux_MISCELLANEOUSContextual image classificationDigital heritagebusiness.industryDeep learningConvolutional Neural Networks[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsData scienceMetadataCultural heritageDigital preservationCultural heritage020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)
researchProduct

Estimation of brain connectivity through Artificial Neural Networks

2019

Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…

Computer scienceFeature selection02 engineering and technologyConnectivity measurements03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringArtificial neural networkbusiness.industryProcess (computing)BrainPattern recognitionElectroencephalographyCollinearityCausalityData pointCausality; Connectivity measurements; Physiological systems modeling - Multivariate signal processingNorm (mathematics)Physiological systems modeling - Multivariate signal processingRegression Analysis020201 artificial intelligence & image processingAnalysis of varianceArtificial intelligenceNeural Networks ComputerbusinessAlgorithms Brain Electroencephalography Regression Analysis Neural Networks Computer030217 neurology & neurosurgeryLinear equationAlgorithms
researchProduct

Krill herd algorithm-based neural network in structural seismic reliability evaluation

2018

ABSTRACTIn this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Alg…

Computer scienceGeneral Mathematics02 engineering and technologyBack propagation neural networkkrill herdLinear regression0202 electrical engineering electronic engineering information engineeringMathematics (all)Mechanics of MaterialGeneral Materials Scienceartificial krill herd algorithmCivil and Structural Engineeringregression modelArtificial neural networkMechanical EngineeringFeed forwardseismic reliability assessment of structureKrill herd algorithmRegression analysisArtificial intelligence techniqueKrill herd021001 nanoscience & nanotechnologySettore ICAR/09 - Tecnica Delle CostruzioniMechanics of Materials020201 artificial intelligence & image processingMaterials Science (all)0210 nano-technologyoptimizationRelative displacementAlgorithmartificial neural networkMechanics of Advanced Materials and Structures
researchProduct

Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging

2021

Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardwar…

Computer scienceGraphics processing unit02 engineering and technologyResiduallcsh:TechnologyArticle030218 nuclear medicine & medical imaginglcsh:Chemistrydeep learning; segmentation; prostate; MRI; ENet; UNet; ERFNet; radiomicsSet (abstract data type)03 medical and health sciences0302 clinical medicineENetERFNet0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceSegmentationlcsh:QH301-705.5InstrumentationSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFluid Flow and Transfer ProcessesprostateArtificial neural networklcsh:Tbusiness.industryProcess Chemistry and TechnologyDeep learningsegmentationGeneral EngineeringProcess (computing)deep learningUNetPattern recognitionlcsh:QC1-999Computer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040radiomics020201 artificial intelligence & image processingArtificial intelligenceCentral processing unitlcsh:Engineering (General). Civil engineering (General)businesslcsh:PhysicsMRIApplied Sciences
researchProduct

Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology

2021

[EN] Background and objective: Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explain-ability to the estimated value. Methods: The network was des…

Computer scienceHeart VentriclesMagnetic Resonance Imaging CineHealth InformaticsWeak supervisionTECNOLOGIA ELECTRONICAsymbols.namesakeMagnetic resonance imagingSegmentationApproximation errorImage Processing Computer-AssistedHumansSegmentationBasis (linear algebra)Artificial neural networkbusiness.industryDeep learningPattern recognitionHeartDeep learningLeft ventricleExplainabilityPearson product-moment correlation coefficientComputer Science ApplicationsTest setsymbolsArtificial intelligenceNeural Networks ComputerbusinessSoftwareVolume (compression)
researchProduct

A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

2014

Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…

Computer scienceLand coverimaging spectrometrysub-pixel mappingKernel (linear algebra)urban land coverPartial least squares regressionlcsh:Sciencespatial resolutionHyMapRemote sensingmachine learning; regression; sub-pixel mapping; spatial resolution; imaging spectrometry; hyperspectral; urban land coverTraining setArtificial neural networkbusiness.industryHyperspectral imagingPattern recognitionRandom forestSupport vector machineKernel methodmachine learninghyperspectralKernel (statistics)General Earth and Planetary Sciencesregressionlcsh:QArtificial intelligencebusinessRemote Sensing
researchProduct

Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks

2021

[EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was tra…

Computer scienceMR prostate imagingUS prostate imagingINGENIERIA MECANICAconvolutional neural networklcsh:TechnologyConvolutional neural network030218 nuclear medicine & medical imaginglcsh:Chemistry03 medical and health sciences0302 clinical medicinemedicineGeneral Materials Sciencelcsh:QH301-705.5Instrumentation030304 developmental biologyFluid Flow and Transfer Processes0303 health sciencesmedicine.diagnostic_testlcsh:Tbusiness.industryProcess Chemistry and TechnologyConvolutional Neural NetworksUltrasoundResolution (electron density)General EngineeringMagnetic resonance imagingPattern recognitionProstate Segmentationlcsh:QC1-999Computer Science ApplicationsNeural resolution enhancementlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Christian ministryArtificial intelligencelcsh:Engineering (General). Civil engineering (General)Magnetic Resonance and Ultrasound Imagesbusinesslcsh:PhysicsProstate segmentationApplied Sciences
researchProduct