Search results for "NEURAL NETWORK"
showing 10 items of 1385 documents
A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior.
2011
The neural mechanisms underlying schizophrenic behavior are unknown and very difficult to investigate experimentally, although a few experimental and modeling studies suggested possible causes for some of the typical psychotic symptoms related to this disease. The brain region most involved in these processes seems to be the hippocampus, because of its critical role in establishing memories for objects or events in the context in which they occur. In particular, a hypofunction of the N-methyl-D-aspartate (NMDA) component of the synaptic input on the distal dendrites of CA1 pyramidal neurons has been suggested to play an important role for the emergence of schizophrenic behavior. Modeling st…
Computation of Psycho-Acoustic Annoyance Using Deep Neural Networks
2019
Psycho-acoustic parameters have been extensively used to evaluate the discomfort or pleasure produced by the sounds in our environment. In this context, wireless acoustic sensor networks (WASNs) can be an interesting solution for monitoring subjective annoyance in certain soundscapes, since they can be used to register the evolution of such parameters in time and space. Unfortunately, the calculation of the psycho-acoustic parameters involved in common annoyance models implies a significant computational cost, and makes difficult the acquisition and transmission of these parameters at the nodes. As a result, monitoring psycho-acoustic annoyance becomes an expensive and inefficient task. Thi…
A Wavelet approach to extract main features from indirect immunofluorescence images
2019
A number of previous studies have shown that IIF image analysis requires complex and sometimes heterogeneous and diversified methods. Robust solutions can be proposed but they need to orchestrate several methods from low-level analysis up to more complex neural networks or SVM for data classification. The contribution intends to highlight the versatility of Wavelet Transform (WT) and their use in various levels of analysis for the classification of IIF images in order to develop a system capable of performing: image enhancement, ROI segmentation and object classification. Therefore, WT was adopted in the de-noise section, segmentation and classification. This analysis allows frequencies cha…
Towards a Hierarchical Multitask Classification Framework for Cultural Heritage
2018
Digital technologies such as 3D imaging, data analytics and computer vision opened the door to a large set of applications in cultural heritage. Digital acquisition of a cultural assets takes nowadays a couple of seconds thanks to the achievements in 2D and 3D acquisition technologies. However, enriching these cultural assets with labels and relevant metadata is still not fully automatized especially due to their nature and specificities. With the recent publication of several cultural heritage datasets, many researchers are tackling the challenge of effectively classifying and annotating digital heritage. The challenges that are often addressed are related to visual recognition and image c…
Estimation of brain connectivity through Artificial Neural Networks
2019
Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…
Krill herd algorithm-based neural network in structural seismic reliability evaluation
2018
ABSTRACTIn this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Alg…
Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging
2021
Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardwar…
Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology
2021
[EN] Background and objective: Magnetic resonance imaging is the most reliable imaging technique to assess the heart. More specifically there is great importance in the analysis of the left ventricle, as the main pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract its volume. In this work we present a neural network architecture that is capable of directly estimating the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and provide a segmentation of the region which is the basis of the volume calculation, thus offering explain-ability to the estimated value. Methods: The network was des…
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
2014
Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…
Robust Resolution-Enhanced Prostate Segmentation in Magnetic Resonance and Ultrasound Images through Convolutional Neural Networks
2021
[EN] Prostate segmentations are required for an ever-increasing number of medical applications, such as image-based lesion detection, fusion-guided biopsy and focal therapies. However, obtaining accurate segmentations is laborious, requires expertise and, even then, the inter-observer variability remains high. In this paper, a robust, accurate and generalizable model for Magnetic Resonance (MR) and three-dimensional (3D) Ultrasound (US) prostate image segmentation is proposed. It uses a densenet-resnet-based Convolutional Neural Network (CNN) combined with techniques such as deep supervision, checkpoint ensembling and Neural Resolution Enhancement. The MR prostate segmentation model was tra…