Search results for "NEUROPLASTICITY"

showing 10 items of 136 documents

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Motor cortical plasticity induced by motor learning through mental practice

2015

Several investigations suggest that actual and mental actions trigger similar neural substrates. Motor learning via physical practice results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. However, whether this neuroplasticity process contributes to improve motor performance through mental practice remains to be determined. Here, we tested skill learning-dependent changes in primary motor cortex (M1) excitability and plasticity by means of transcranial magnetic stimulation in subjects trained to physically execute or mentally perform a sequence of finger opposition movements. Before and after …

Motor learningCognitive Neurosciencemedicine.medical_treatmentlcsh:RC321-571Behavioral NeuroscienceMotor imageryMotor imageryNeuroplasticitymedicineCortical plasticity; Long term depression; Long term potentiation; Motor imagery; Motor learning; Behavioral Neuroscience; Cognitive Neuroscience; Neuropsychology and Physiological PsychologyCortical plasticityLong-term depressionlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchInterstimulus intervalLong term potentiationTranscranial magnetic stimulationNeuropsychology and Physiological Psychologymedicine.anatomical_structureLong term depressionPrimary motor cortexMotor learningPsychologyNeuroscienceNeuroscienceMotor cortexFrontiers in Behavioral Neuroscience
researchProduct

P 96. Prismatic lenses as a novel tool to directionally manipulate motor cortex excitability: Evidence from paired-pulse TMS

2013

Introduction Prismatic adaptation (PA) is a visuo-motor procedure requiring participants to adapt to prismatic lenses shifting the visual scene horizontally. Such an adaptation produces a phenomenon called “after-effect”, opposite to the side of lenses deviation. The after-effect has been frequently associated with a shift of spatial attention in the same direction and with a restoration of hemispatial neglect symptoms. PA has captured the interest of neuroscientists in the last decades, since it affects high-order spatial cognition even thought consisting of low-level visuo-motor processes. Objectives Despite a huge literature on this procedure, the basic neural processes related to PA and…

medicine.medical_treatmentHemispatial neglectSpatial cognitionNeurophysiologyStimulus (physiology)Sensory SystemsTranscranial magnetic stimulationmedicine.anatomical_structureNeurologyPhysiology (medical)NeuroplasticitymedicineNeurology (clinical)Evoked potentialmedicine.symptomPsychologyNeuroscienceMotor cortexClinical Neurophysiology
researchProduct

A historic perspective on the current progress in elucidation of the biologic significance of non-neuronal acetylcholine

2020

The "5th International Symposium on Non-neuronal Acetylcholine: from bench to bedside" was held on September 27-29, 2019 in Hyatt Regency, Long Beach, CA, USA. Approximately 50 scientists from 11 countries over 6 continents participated in this meeting. The major topics included an overall biologic significance of non-neuronal acetylcholine (ACh) and the roles of the non-neuronal cholinergic systems in mucocutaneous, respiratory, digestive, immunologic, endocrine, cardiovascular, musculoskeletal and kidney diseases, and cancer. This meeting facilitated continued work to advance the fundamental science and translational aspects of the interdisciplinary studies on non-neuronal ACh. The progre…

0301 basic medicinePharmacologyImmunologyBiologyNon neuronal acetylcholine03 medical and health sciencesParacrine signalling030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisNeuroplasticitymedicineImmunology and AllergyCholinergicAutocrine signallingNeuroscienceHomeostasisAcetylcholineAcetylcholine receptormedicine.drugInternational Immunopharmacology
researchProduct

Effects of the Antidepressant Fluoxetine on the Somatostatin Interneurons in the Basolateral Amygdala

2018

Although the precise mechanism of action of antidepressant drugs remains elusive, the neuroplastic hypothesis has gained acceptance during the last two decades. Several studies have shown that treatment with antidepressants such as Fluoxetine is associated with enhanced plasticity in control animals, especially in regions such as the visual cortex, the hippocampus and the medial prefrontal cortex. More recently, the basolateral amygdala has been shown to be affected by Fluoxetine leading to a reopening of critical period-like plasticity in the fear and aggression circuits. One of the key elements triggering this type of brain plasticity are inhibitory networks, especially parvalbumin intern…

Male0301 basic medicineDendritic spinegenetic structuresInterneuronHippocampusMice TransgenicMice03 medical and health sciences0302 clinical medicineInterneuronsFluoxetineNeuroplasticitymedicineAnimalsPrefrontal cortexNeuronal PlasticitybiologyBasolateral Nuclear ComplexGeneral NeuroscienceAntidepressive Agents030104 developmental biologymedicine.anatomical_structureSomatostatinnervous systembiology.proteinSomatostatinNeuroscience030217 neurology & neurosurgeryParvalbuminBasolateral amygdalaNeuroscience
researchProduct

Extensive migration of young neurons into the infant human frontal lobe

2016

Building the human brain As the brain develops, neurons migrate from zones of proliferation to their final locations, where they begin to build circuits. Paredes et al. have discovered that shortly after birth, a group of neurons that proliferates near the ventricles migrates in chains alongside circulatory vessels into the frontal lobes (see the Perspective by McKenzie and Fishell). Young neurons that migrate postnatally into the anterior cingulate cortex then develop features of inhibitory interneurons. The number of migratory cells decreases over the first 7 months of life, and by 2 years of age, migratory cells are not evident. Any damage during migration, such as hypoxia, may affect th…

Doublecortin Domain Proteins0301 basic medicineNeurogenesisNeuropeptideBiologyInhibitory postsynaptic potentialGyrus Cinguli03 medical and health sciencesLateral ventricles0302 clinical medicineCell MovementInterneuronsLateral VentriclesCorrespondenceNeuroplasticitymedicineHumansGyrus cinguliAnterior cingulate cortexNeuronsNeuronal PlasticityMultidisciplinaryNeuropeptidesNeurogenesisInfantAnatomyFrontal Lobe030104 developmental biologymedicine.anatomical_structureFrontal lobeMicrotubule-Associated Proteins030217 neurology & neurosurgeryScience
researchProduct

Complex regional pain syndrome-significant progress in understanding.

2015

Research into complex regional pain syndrome (CRPS) has made significant progress. First, there was the implementation of the official IASP "Budapest" diagnostic criteria. It would be desirable to also define exclusion and outcome criteria that should be reported in studies. The next step was to recognize the complex pathophysiology. After trauma, some inflammation is physiological; in acute CRPS, this inflammation persists for months. There is an abundance of inflammatory and a lack of anti-inflammatory mediators. This proinflammatory network (cytokines and probably also other mediators) sensitizes the peripheral and spinal nociceptive system, it facilitates the release of neuropeptides fr…

Nervous systemInflammationNeuronal Plasticitybusiness.industryInflammationmedicine.diseaseProinflammatory cytokineAnesthesiology and Pain MedicineComplex regional pain syndromeNociceptionmedicine.anatomical_structureNeurologyNeuroplasticitymedicineNociceptorDisease ProgressionAnimalsHumansNeurology (clinical)Endothelial dysfunctionmedicine.symptombusinessNeuroscienceComplex Regional Pain SyndromesPain
researchProduct

Transcranial magnetic stimulation and neuroplasticity

1998

We review past results and present novel data to illustrate different ways in which TMS can be used to study neural plasticity. Procedural learning during the serial reaction time task (SRTT) is used as a model of neural plasticity to illustrate the applications of TMS. These different applications of TMS represent principles of use that we believe are applicable to studies of cognitive neuroscience in general and exemplify the great potential of TMS in the study of brain and behavior. We review the use of TMS for (1) cortical output mapping using focal, single-pulse TMS; (2) identification of the mechanisms underlying neuroplasticity using paired-pulse TMS techniques; (3) enhancement of th…

Serial reaction timeNeuronal PlasticityCognitive Neurosciencemedicine.medical_treatmentMotor CortexPrefrontal CortexExperimental and Cognitive PsychologyCognitionCognitive neuroscienceProcedural memoryTranscranial magnetic stimulationBehavioral NeuroscienceInvestigation methodsNeuroimagingNeuroplasticityReaction TimemedicineHumansLearningPsychologyElectromagnetic PhenomenaNeuroscienceNeuropsychologia
researchProduct

Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children

2000

For decades behavioral methods, such as the head-turning or sucking paradigms, have been the primary methods to investigate auditory discrimination, learning and the function of sensory memory in infancy and early childhood. During recent years, however, a new method for investigating these issues in children has emerged. This method makes use of the mismatch negativity (MMN), the brain's automatic change-detection response, which has been used intensively in both basic and clinical studies in adults for twenty years. This review demonstrates that, unlike many other components of event-related potentials, the MMN is developmentally quite stable and can be obtained even from pre-term infants…

AdultAuditory perceptionMismatch negativityEngrambehavioral disciplines and activities050105 experimental psychologyDevelopmental psychology03 medical and health sciencesDiscrimination Psychological0302 clinical medicineAudiometryMemoryEvent-related potentialPhysiology (medical)NeuroplasticityReaction TimemedicineHumans0501 psychology and cognitive sciencesChildNeuronal Plasticitymedicine.diagnostic_testMemoriaSensory memory05 social sciencesBrainInfantSensory SystemsNeurologyAuditory PerceptionEvoked Potentials AuditoryNeurology (clinical)AudiometryPsychologypsychological phenomena and processes030217 neurology & neurosurgeryClinical Neurophysiology
researchProduct

PSA-NCAM expression in the rat medial prefrontal cortex

2005

The rat medial prefrontal cortex, an area considered homologous to the human prefrontal cortex, is a region in which neuronal structural plasticity has been described during adulthood. Some plastic processes such as neurite outgrowth and synaptogenesis are known to be regulated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). Since PSA-NCAM is present in regions of the adult CNS which are undergoing structural remodeling, such as the hypothalamus or the hippocampus, we have analyzed the expression of this molecule in the medial prefrontal cortex of adult rats using immunohistochemistry. PSA-NCAM immunoreactivity was found both in cell bodies and in the neuropil of…

MaleNeuropilNeuriteInterneuronAntimetabolitesCell SurvivalSynaptophysinSynaptogenesisPrefrontal CortexHippocampusNeural Cell Adhesion Molecule L1BiologyRats Sprague-DawleyNeuroplasticityNeuropilmedicineAnimalsFluorescent Antibody Technique IndirectPrefrontal cortexNeuronsNeuronal PlasticityGlutamate DecarboxylasePyramidal CellsGeneral NeuroscienceImmunohistochemistryRatsPhenotypemedicine.anatomical_structureBromodeoxyuridinenervous systemSialic AcidsNeural cell adhesion moleculeNeuroscienceNeuroscience
researchProduct