Search results for "NGAL"

showing 10 items of 1796 documents

Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis.

2018

Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent with their function as antigen…

0301 basic medicineNonsynonymous substitutionGenome evolutionNatural selectionESTADISTICA E INVESTIGACION OPERATIVA030106 microbiologyBiologyEvolution MolecularFungal Proteins03 medical and health sciencesGene Expression Regulation FungalBIOQUIMICA Y BIOLOGIA MOLECULARGeneticsMajors surface glycoproteinsSelection GeneticGeneEcology Evolution Behavior and SystematicsStenoxenismGeneticsFungal proteinNatural selectionMembrane GlycoproteinsPneumocystisFungal geneticsBiota3. Good healthGlycosylphosphatidylinositol030104 developmental biologyRed Queen hypothesisFunction (biology)Research Article
researchProduct

Treatment of invasive fungal diseases in cancer patients—Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German …

2020

Background Invasive fungal diseases remain a major cause of morbidity and mortality in cancer patients undergoing intensive cytotoxic therapy. The choice of the most appropriate antifungal treatment (AFT) depends on the fungal species suspected or identified, the patient's risk factors (eg length and depth of granulocytopenia) and the expected side effects. Objectives Since the last edition of recommendations for 'Treatment of invasive fungal infections in cancer patients' of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) in 2013, treatment strategies were gradually moving away from solely empirical therapy of presumed or possib…

0301 basic medicineOncologymedicine.medical_specialtyAntifungal Agents030106 microbiologyMedizinDermatologyNeutropeniaAspergillosis030207 dermatology & venereal diseases03 medical and health sciencesImmunocompromised Host0302 clinical medicineInternal medicineNeoplasmsmedicineHumansHematologybusiness.industryMucormycosisCancerGeneral MedicineGuidelineEvidence-based medicineHematologymedicine.diseaseClinical trialInfectious DiseasesHematologic NeoplasmsPractice Guidelines as TopicbusinessInvasive Fungal InfectionsAgranulocytosis
researchProduct

Microbial diversity along a gradient in peatlands treating mining-affected waters.

2018

Peatlands are used for the purification of mining-affected waters in Northern Finland. In Northern climate, microorganisms in treatment peatlands (TPs) are affected by long and cold winters, but studies about those microorganisms are scarce. Thus, the bacterial, archaeal and fungal communities along gradients of mine water influence in two TPs were investigated. The TPs receive waters rich in contaminants, including arsenic (As), sulfate (SO42-) and nitrate (NO3-). Microbial diversity was high in both TPs, and microbial community composition differed between the studied TPs. Bacterial communities were dominated by Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria, archaeal commu…

0301 basic medicinePeatmetal toleranceMicroorganismta1172030106 microbiologyMicrobial metabolismBiologyApplied Microbiology and BiotechnologyMicrobiologyMiningwetlandsActinobacteriaWater Purificationkosteikot03 medical and health sciencessulfate reductionfungal ITScontaminant removalturvemaatFinlandSoil Microbiologyjäteveden käsittelykaivostoimintaEcologyBacteriaMicrobiotaFungiBiodiversity15. Life on landbiology.organism_classificationArchaeabiodiversiteetti030104 developmental biologyMicrobial population biology13. Climate actionEnvironmental chemistrymikro-organismitkaivosvesiProteobacteriaSoil microbiologyWater Pollutants ChemicalAcidobacteriaFEMS microbiology ecology
researchProduct

eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences

2017

Abstract eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by …

0301 basic medicinePeptidyl transferaseProlineCytoskeleton organizationAmino Acid MotifsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalSaccharomyces cerevisiaeBioinformaticsRibosomeGTP Phosphohydrolases03 medical and health sciences0302 clinical medicinePeptide Initiation FactorsGene Expression Regulation FungalGeneticsProtein biosynthesisHumansMolecular BiologyPolyproline helixBinding SitesbiologyRNA-Binding Proteinsbiology.organism_classificationStop codonCell biology030104 developmental biologybiology.proteinGenome FungalHydrophobic and Hydrophilic InteractionsRibosomesEIF5A030217 neurology & neurosurgeryProtein BindingNucleic Acids Research
researchProduct

A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae

2016

Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the…

0301 basic medicinePhysiologyATPaseAntiporterYeast and Fungal ModelsPhysical ChemistryBiochemistryIon ChannelsCation homeostasisMedicine and Health SciencesHomeostasislcsh:QH301-705.5Membrane potentialEcologybiologyChemistryOrganic CompoundsPhysicsMonosaccharidesElectrophysiologyChemistryComputational Theory and MathematicsBiochemistryModeling and SimulationPhysical SciencesThermodynamicsProtonsAlgorithmsResearch ArticleChemical ElementsSaccharomyces cerevisiaeCarbohydratesSaccharomyces cerevisiaeResearch and Analysis MethodsMembrane PotentialModels Biological03 medical and health sciencesCellular and Molecular NeuroscienceSaccharomycesModel OrganismsCationsGeneticsMolecular BiologyEcology Evolution Behavior and SystematicsIon transporterNuclear PhysicsNucleonsIonsOrganic ChemistrySodiumChemical CompoundsOrganismsFungiBiology and Life SciencesComputational BiologyBiological Transportbiology.organism_classificationYeast030104 developmental biologyGlucoseMetabolismlcsh:Biology (General)SymporterActive transportbiology.proteinBiophysicsPLoS Computational Biology
researchProduct

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

2017

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

0301 basic medicinePhysiologyProtein Extractionlcsh:MedicineYeast and Fungal ModelsPolymerase Chain ReactionBiochemistryGreen fluorescent proteinEpitopesDatabase and Informatics MethodsGene Expression Regulation FungalImmune PhysiologyProtein purificationMacromolecular Structure AnalysisMedicine and Health SciencesProto-Oncogene Proteins c-myclcsh:ScienceStainingExtraction TechniquesImmune System ProteinsMultidisciplinarybiologyGene targetingProtein subcellular localization predictionMembrane StainingExperimental Organism SystemsGene TargetingArtifactsSequence AnalysisPlasmidsResearch ArticleProtein StructureSaccharomyces cerevisiae ProteinsBioinformaticsRecombinant Fusion ProteinsGenetic VectorsGreen Fluorescent ProteinsImmunologySaccharomyces cerevisiaeHemagglutinins ViralSaccharomyces cerevisiaeComputational biologyResearch and Analysis MethodsGreen Fluorescent ProteinGenomic InstabilityAntibodiesProtein–protein interactionProto-Oncogene Proteins c-mycSaccharomyces03 medical and health sciencesModel OrganismsAmino Acid Sequence AnalysisMolecular BiologyStaining and Labelinglcsh:ROrganismsFungiBiology and Life SciencesProteinsbiology.organism_classificationFusion proteinYeastLuminescent Proteins030104 developmental biologySpecimen Preparation and Treatmentlcsh:QProtein Structure NetworksPLOS ONE
researchProduct

Phosphorylation and proteasome recognition of the mRNA- binding protein Cth2 facilitates yeast adaptation to iron deficiency

2018

Iron is an indispensable micronutrient for all eukaryotic organisms due to its participation as a redox cofactor in many metabolic pathways. Iron imbalance leads to the most frequent human nutritional deficiency in the world. Adaptation to iron limitation requires a global reorganization of the cellular metabolism directed to prioritize iron utilization for essential processes. In response to iron scarcity, the conserved Saccharomyces cerevisiae mRNA-binding protein Cth2, which belongs to the tristetraprolin family of tandem zinc finger proteins, coordinates a global remodeling of the cellular metabolism by promoting the degradation of multiple mRNAs encoding highly iron-consuming proteins.…

0301 basic medicineProteasome Endopeptidase ComplexSaccharomyces cerevisiae ProteinsIronPosttranslational regulationSaccharomyces cerevisiaeMrna bindingMicrobiology03 medical and health sciencesProtein stabilityTristetraprolinGene Expression Regulation FungalVirologyPolitical scienceProtein stabilitySerineRNA MessengerPhosphorylationIron deficiencyAdaptation PhysiologicalQR1-502Yeast030104 developmental biologyMutagenesisChristian ministryProtein Processing Post-TranslationalHumanities
researchProduct

Fungicide resistance towards fludioxonil conferred by overexpression of the phosphatase gene Mo PTP 2 in Magnaporthe oryzae

2018

The fungicide fludioxonil causes hyperactivation of the Hog1p MAPK within the high-osmolarity glycerol signaling pathway essential for osmoregulation in pathogenic fungi. The molecular regulation of MoHog1p phosphorylation is not completely understood in pathogenic fungi. Thus, we identified and characterized the putative MoHog1p-interacting phosphatase gene MoPTP2 in the filamentous rice pathogen Magnaporthe oryzae. We found overexpression of MoPTP2 conferred fludioxonil resistance in M. oryzae, whereas the 'loss of function' mutant ΔMoptp2 was more susceptible toward the fungicide. Additionally, quantitative phosphoproteome profiling of MoHog1p phosphorylation revealed lower phosphorylati…

0301 basic medicineProteomeMutantPhosphataseGene ExpressionDioxolesBiologyFludioxonilMicrobiologyMicrobiologyFungal Proteins03 medical and health sciencesDrug Resistance FungalGene expressionPyrrolesPhosphorylationMolecular BiologyGenePlant DiseasesOryzaPhosphoproteinsFungicides IndustrialFungicideMagnaporthe030104 developmental biologyPhosphorylationMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesSignal transductionProtein Processing Post-TranslationalGene DeletionMolecular Microbiology
researchProduct

The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae

2017

[Background] Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.

0301 basic medicineQuantitative trait lociGenotype030106 microbiologyAroma of wineSaccharomyces cerevisiaeSaccharomyces cerevisiaeQuantitative trait locusBiologyEvolution Molecular03 medical and health sciencesQuantitative Trait HeritableGene FrequencyStress PhysiologicalGene Expression Regulation FungalGenetic variationGeneticsSubtelomeresAllelesGenetic Association StudiesPhylogenyGeneticsWineReciprocal hemizygosity analysisCold adaptationdigestive oral and skin physiologyChromosome Mappingfood and beveragesGenomicsbiology.organism_classificationAdaptation PhysiologicalIndustrial yeastGenetic architectureCold TemperatureYeast in winemaking030104 developmental biologyPhenotypeLipid asymmetryFermentationAdaptationGenome FungalResearch ArticleBiotechnology
researchProduct

Growth rate controls mRNA turnover in steady and non-steady states.

2016

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

0301 basic medicineRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeyeastTranscriptome03 medical and health sciencesTranscription (biology)Gene Expression Regulation FungalGene expressionmRNA stabilityGrowth rateRNA MessengerMolecular BiologyGenePoint of ViewMessenger RNAbiologyRNA FungalCell Biologybiology.organism_classificationMolecular biologyYeastCell biology030104 developmental biologygrowth rateGene expressiontranscriptionRNA biology
researchProduct