Search results for "NVO"
showing 10 items of 2061 documents
Statistical retrieval of atmospheric profiles with deep convolutional neural networks
2019
Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…
Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V
2018
Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…
First Results of Hyperspectral Scene Generation in Preparation of the Chime Imaging Spectrometer Mission
2021
End-To-End mission performance simulators (E2Es) are software tools developed to support satellite mission preparatory activities. For passive remote sensing missions, E2Es generate synthetic scenes simulating the interaction of the solar radiation between the atmosphere and the surface; therefore allowing the estimation of the mission performance before its launch. In this paper, we present the CHIME Scene Generator Module (SGM) as part of CHIME E2Es, with state-of-the-art parallelization and optimization that give a performance allowing to obtain a whole year of daily worldwide Top-Of-Atmosphere radiance images in a matter of hours. The CHIME SGM generates 100x200km hyperspectral scenes w…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Estimating Missing Information by Cluster Analysis and Normalized Convolution
2018
International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.
Transferring deep learning models for cloud detection between Landsat-8 and Proba-V
2020
Abstract Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical proper…
Enhancing the retrieval of stream surface temperature from Landsat data
2019
International audience; Thermal images of water bodies often show a radiance gradient perpendicular to the banks. This effect is frequently due to mixed land and water thermal pixels. In the case of the Landsat images, radiance mixing can also affect pure water pixels due the cubic convolution resampling of the native thermal measurements. Some authors recommended a general-purpose margin of two thermal pixels to the banks or a minimum river width of three pixels, to avoid near bank effects in water temperature retrievals. Given the relatively course spatial resolution of satellite thermal sensors, the three pixel margin severely restricts their application to temperature mapping in many ri…
Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
2021
The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then d…
Social vulnerability to climate policies: Building a matrix to assess policy impacts on well-being
2021
In this article, we address the social vulnerability of people to climate mitigation policies and contribute to assessing the social impacts of climate policies by introducing a matrix tool for conducting vulnerability assessments and participatory climate policy planning. The matrix serves as a methodological tool for identifying social groups in their social spaces. First, we lay the foundation for the matrix by linking social vulnerability to equality and justice, demonstrating the importance of addressing social vulnerability in climate policy design and research. Next, we introduce the ways in which social vulnerability has been addressed in the integration of social and climate policy…
Insect Vectors (Hemiptera: Cixiidae) and Pathogens Associated with the Disease Syndrome “Basses Richesses” of Sugar Beet in France
2019
International audience; The syndrome “basses richesses” (SBR) is a disease of sugar beet in eastern France associated with two phloem-restricted, nonculturable plant pathogens: a stolbur phytoplasma and a γ-3 proteobacterium, here called SBR bacterium. Three planthopper (Hemiptera: Cixiidae) species were found to live near and within sugar beet fields in eastern France: Cixius wagneri, Hyalesthes obsoletus, and Pentastiridius leporinus. The role of these planthoppers in spreading the two pathogens to sugar beet was studied. Based on its abundance and high frequency of infection with the SBR bacterium, P. leporinus was considered to be the economic vector of SBR disease. C. wagneri, the prim…