Search results for "Naive Bayes classifier"

showing 10 items of 30 documents

Towards Open Domain Chatbots—A GRU Architecture for Data Driven Conversations

2018

Understanding of textual content, such as topic and intent recognition, is a critical part of chatbots, allowing the chatbot to provide relevant responses. Although successful in several narrow domains, the potential diversity of content in broader and more open domains renders traditional pattern recognition techniques inaccurate. In this paper, we propose a novel deep learning architecture for content recognition that consists of multiple levels of gated recurrent units (GRUs). The architecture is designed to capture complex sentence structure at multiple levels of abstraction, seeking content recognition for very wide domains, through a distributed scalable representation of content. To …

010302 applied physicsStructure (mathematical logic)Service (systems architecture)Computer sciencebusiness.industryDeep learning02 engineering and technologycomputer.software_genre01 natural sciencesChatbotNaive Bayes classifier020204 information systems0103 physical sciencesPattern recognition (psychology)0202 electrical engineering electronic engineering information engineeringArtificial intelligenceArchitecturebusinesscomputerNatural language processingSentence
researchProduct

Monitoring internet trade to inform species conservation actions

2017

Specimens, parts and products of threatened species are now commonly traded on the internet. This could threaten the survival of some wild populations if inadequately regulated. We outline two methods to monitor internet sales of threatened species in order to assess potential threats and inform conservation actions. Our first method combines systematic monitoring of online offers of plants for sale over the internet with consultation by experts experienced in identifying plants collected from the wild based on images of the specimens, species identity and details of the trade. Our second method utilises a computational model, trained using Bayesian techniques to records that have been clas…

0106 biological sciencesSettore BIO/07 - EcologiaEcologybusiness.industry010604 marine biology & hydrobiologyInternet privacyfood and beverages010603 evolutionary biology01 natural scienceslcsh:QK1-989Geographylcsh:Botanylcsh:ZoologySettore BIO/03 - Botanica Ambientale E ApplicataThe InternetAdenia Commiphora Operculicarya Uncarina Machine learning Infer.NET Naive Bayes classifierlcsh:QL1-991businessNature and Landscape Conservation
researchProduct

Defining classifier regions for WSD ensembles using word space features

2006

Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this 'optimal ensembling method' more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible potential remaining). In the interest of developing if more accurate ensembles, w e here define the strong regions for three popular and effective classifiers used for WSD task (Naive Bayes – NB, Support Vector Machine – SVM, Decision Rules – D) using word features (word grain, amount of positive and neg…

0303 health sciencesProbability learningWord-sense disambiguationComputer sciencebusiness.industryPattern recognition02 engineering and technologyDecision ruleSupport vector machine03 medical and health sciencesNaive Bayes classifier0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingStatistical analysisArtificial intelligencePolysemybusinessClassifier (UML)030304 developmental biology
researchProduct

ActRec: A Wi-Fi-Based Human Activity Recognition System

2020

In this paper, we develop a Wi-Fi-based activity recognition system called ActRec, which can be used for the remote monitoring of elderly. ActRec comprises two parts: radio-frequency (RF) sensing and machine learning. In the RF sensing part, two laptops act as transmitter and receiver to record the channel transfer function of an indoor environment. This RF data is collected in the presence of seven human participants performing three activities: walking, falling, and sitting. The RF data containing the fingerprints of user activity is then pre-processed with various signal processing algorithms to reduce noise effects and to estimate the mean Doppler shift (MDS) of each data sample. We pro…

Activity recognitionNaive Bayes classifierStatistical classificationComputer sciencebusiness.industryFeature vectorDecision treePattern recognitionArtificial intelligencebusiness2020 IEEE International Conference on Communications Workshops (ICC Workshops)
researchProduct

Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongoli…

2020

11 pages; International audience; The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive…

Archeology010504 meteorology & atmospheric sciences[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryComputer scienceMaterials Science (miscellaneous)Topographic position index[SDV]Life Sciences [q-bio]ConservationMachine learningcomputer.software_genre01 natural sciences[SHS]Humanities and Social SciencesNaive Bayes classifierVector graphicsPixel classification[SCCO]Cognitive sciencePixel classification Grey level co-occurrence matrix RGB colour space Texture Topographic position index Photogrammetry Burial complex planigraphy Mongolia Bronze age Iron age0601 history and archaeologyTextureSpectroscopyRGB colour space0105 earth and related environmental sciencesBronze age060102 archaeologyArtificial neural networkbusiness.industryIron ageCentroidGrey level co-occurrence matrix06 humanities and the artscomputer.file_formatMongoliaArchaeologyRandom forestSupport vector machinePhotogrammetryChemistry (miscellaneous)Photogrammetry[SDE]Environmental SciencesBurial complex planigraphyArtificial intelligenceRaster graphicsbusinessGeneral Economics Econometrics and Financecomputer
researchProduct

The Use of Artificial Intelligence in Disaster Management - A Systematic Literature Review

2019

Whenever a disaster occurs, users in social media, sensors, cameras, satellites, and the like generate vast amounts of data. Emergency responders and victims use this data for situational awareness, decision-making, and safe evacuations. However, making sense of the generated information under time-bound situations is a challenging task as the amount of data can be significant, and there is a need for intelligent systems to analyze, process, and visualize it. With recent advancements in Artificial Intelligence (AI), numerous researchers have begun exploring AI, machine learning (ML), and deep learning (DL) techniques for big data analytics in managing disasters efficiently. This paper adopt…

Artificial neural networkbusiness.industryComputer scienceDeep learningBig dataIntelligent decision support system020206 networking & telecommunications02 engineering and technologyLatent Dirichlet allocationConvolutional neural networkSupport vector machinesymbols.namesakeNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingArtificial intelligencebusiness2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM)
researchProduct

The impact of sample reduction on PCA-based feature extraction for supervised learning

2006

"The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and classification error in high dimensions. In this paper, different feature extraction (FE) techniques are analyzed as means of dimensionality reduction, and constructive induction with respect to the performance of Naive Bayes classifier. When a data set contains a large number of instances, some sampling approach is applied to address the computational complexity of FE and classification processes. The main goal of this paper is to show the impact of sample reduction on the process of FE for supervised learning. In our study we analyzed the conventional PC…

Computer scienceCovariance matrixbusiness.industryDimensionality reductionFeature extractionSupervised learningNonparametric statisticsSampling (statistics)Pattern recognitionStratified samplingNaive Bayes classifierSample size determinationArtificial intelligencebusinessEigenvalues and eigenvectorsParametric statisticsCurse of dimensionalityProceedings of the 2006 ACM symposium on Applied computing
researchProduct

A Comparative Study to Analyze the Performance of Advanced Pattern Recognition Algorithms for Multi-Class Classification

2021

This study aims to implement the following four advanced pattern recognition algorithms, such as “optimal Bayesian classifier,” “anti-Bayesian classifier,” “decision trees (DTs),” and “dependence trees (DepTs)” on both artificial and real datasets for multi-class classification. Then, we calculated the performance of individual algorithms on both real and artificial data for comparison. In Sect. 1, a brief introduction is given about the study. In the second section, the different types of datasets used in this study are discussed. In the third section, we compared the classification accuracies of Bayesian and anti-Bayesian methods for both the artificial and real-life datasets. In the four…

Computer sciencebusiness.industryBayesian probabilityDecision treePattern recognitionMulticlass classificationNaive Bayes classifierBayes' theoremComputingMethodologies_PATTERNRECOGNITIONSection (archaeology)Classifier (linguistics)Pattern recognition (psychology)Artificial intelligencebusinessAlgorithm
researchProduct

Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers

2016

In this paper, we present a novel algorithm that performs online histogram-based classification, i.e., specifically designed for the case when the data is dynamic and its distribution is non-stationary. Our method, called the Online Histogram-based Naïve Bayes Classifier (OHNBC) involves a statistical classifier based on the well-established Bayesian theory, but which makes some assumptions with respect to the independence of the attributes. Moreover, this classifier generates a prediction model using uni-dimensional histograms, whose segments or buckets are fixed in terms of their cardinalities but dynamic in terms of their widths. Additionally, our algorithm invokes the principles of info…

Concept driftComputer sciencebusiness.industryBayesian probabilityPattern recognition02 engineering and technologycomputer.software_genreInformation theoryNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION020204 information systemsHistogram0202 electrical engineering electronic engineering information engineeringsort020201 artificial intelligence & image processingData miningArtificial intelligencebusinesscomputerClassifier (UML)Statistical classifier
researchProduct

The impact of feature extraction on the performance of a classifier : kNN, Naïve Bayes and C4.5

2005

"The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity and the classification error in high dimensions. In this paper, different feature extraction techniques as means of (1) dimensionality reduction, and (2) constructive induction are analyzed with respect to the performance of a classifier. Three commonly used classifiers are taken for the analysis: kNN, Naïve Bayes and C4.5 decision tree. One of the main goals of this paper is to show the importance of the use of class information in feature extraction for classification and (in)appropriateness of random projection or conventional PCA to feature extraction for …

Covariance matrixComputer sciencebusiness.industryRandom projectionDimensionality reductionFeature extractionLinear classifierPattern recognitionMachine learningcomputer.software_genreNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITIONPrincipal component analysisArtificial intelligencebusinesscomputerCurse of dimensionalityAdvances in artificial intelligence : 18th conference of the canadian society for computational Studies of Intelligence, Canadian AI 2005, Victoria, Canada, May 9-11, 2005 : proceedings
researchProduct