Search results for "Nanocluster"
showing 10 items of 178 documents
Dynamics of weak interactions in the ligand layer of meta-mercaptobenzoic acid protected gold nanoclusters Au68(m-MBA)32 and Au144(m-MBA)40
2020
Atomically precise metal nanoclusters, stabilized and functionalized by organic ligands, are emerging nanomaterials with potential applications in plasmonics, nano-electronics, bio-imaging, nanocatalysis, and as therapeutic agents or drug carriers in nanomedicine. The ligand layer has an important role in modifying the physico-chemical properties of the clusters and in defining the interactions between the clusters and the environment. While this role is well recognized from a great deal of experimental studies, there is very little theoretical information on dynamical processes within the layer itself. Here, we have performed extensive molecular dynamics simulations, with forces calculated…
Chemically Selective Imaging of Individual Bonds through Scanning Electron Energy-Loss Spectroscopy: Disulfide Bridges Linking Gold Nanoclusters
2020
As proof-of-principle of chemically selective, spatially resolved imaging of individual bonds, we carry out electron energy-loss spectroscopy in a scanning transmission electron microscopy instrument on atomically precise, thiolate-coated gold nanoclusters linked with 5,5'-bis(mercaptomethyl)-2,2'-bipyridine dithiol ligands. The images allow the identification of bridging disulfide bonds (R-S-S-R) between clusters, and X-ray photoelectron spectra support the finding.
Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.
2018
The self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding-directed self-assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p-mercaptobenzoic acid (pMBA)-protected atomically precise silver nanocluster, Na4 [Ag44 (pMBA)30 ], and pMBA-functionalized GNRs were used. High-resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver …
Gold nanoclusters for ratiometric sensing of pH in extremely acidic media.
2019
AuNCs capped with β-nicotinamide adenine dinucleotide phosphate exhibit an outstanding performance as fluorescent pH sensors; specifically they exhibit a high emission in strongly acidic media and linear dependence on pH in extremely acidic media (0.6–2.7) as well as in the 7.0–9.2 pH range, while they are unresponsive at intermediate pH values. Remarkably, these AuNCs make ratiometric sensing possible in extremely acidic media with a single fluorophore, specifically the nanocluster itself.
Covalent and non-covalent coupling of a Au102 nanocluster with a fluorophore: energy transfer, quenching and intracellular pH sensing
2021
Interactions between an atomically precise gold nanocluster Au102(p-MBA)44 (p-MBA = para mercaptobenzoic acid) and a fluorescent organic dye molecule (KU, azadioxatriangulenium) are studied. In solution, the constituents form spontaneously a weakly bound complex leading to quenching of fluorescence of the KU dye via energy transfer. The KU can be separated from the complex by lowering pH, leading to recovery of fluorescence, which forms a basis for an optical reversible pH sensor. However, the sensor is not a stable entity, which could be delivered inside cells. For this purpose, a covalently bound hybrid is synthesized by linking the KU dye to the ligand layer of the cluster via an ester b…
Ellipsoid-shaped superparamagnetic nanoclusters through emulsion electrospinning.
2015
Ellipsoid-shaped nanoclusters composed of single superparamagnetic nanoparticles can be generated by emulsion electrospinning. Stretching and subsequent solvent evaporation of iron oxide loaded emulsion droplets during the emulsion electrospinning process enables the creation of such structures embedded in polymer nanofibers. Dissolution of the polymer fibers yields an aqueous dispersion of the inorganic clusters which are the first example of ellipsoid-shaped superparamagnetic nanoclusters with a high saturation magnetization (∼47 emu g(-1)).
What Contributes to the Measured Chiral Optical Response of the Glutathione-Protected Au25 Nanocluster?
2023
The water-soluble glutathione-protected [Au25(GSH)18]−1 nanocluster was investigated by integrating several methodologies such as molecular dynamics simulations, essential dynamics analysis, and state-of-the-art time-dependent density functional theory calculations. Fundamental aspects such as conformational, weak interactions and solvent effects, especially hydrogen-bonds, were included and found to play a fundamental role in assessing the optical response of this system. Our analysis demonstrated not only that the electronic circular dichroism is extremely sensitive to the solvent presence but also that the solvent itself plays an active role in the optical activity of such system, formin…
Information Processing Schemes Based on Monolayer Protected Metallic Nanoclusters
2011
Nanostructures are potentially useful as building blocks to complement future electronics because of their high versatility and packing densities. The fabrication and characterization of particular nanostructures and the use of new theoretical tools to describe their properties are receiving much attention. However, the integration of these individual systems into general schemes that could perform simple tasks is also necessary because modern electronics operation relies on the concerted action of many basic units. We review here new conceptual schemes that can allow information processing with ligand or monolayer protected metallic nanoclusters (MPCs) on the basis of the experimentally de…
Cubic aromaticity in ligand-stabilized doped Au superatoms
2021
The magnetic response of valence electrons in doped gold-based [M@Au8L8]q superatoms (M = Pd, Pt, Ag, Au, Cd, Hg, Ir, and Rh; L = PPh3; and q = 0, +1, +2) is studied by calculating the gauge including magnetically induced currents (GIMIC) in the framework of the auxiliary density functional theory. The studied systems include 24 different combinations of the dopant, total cluster charge, and cluster structure (cubic-like or oblate). The magnetically induced currents (both diatropic and paratropic) are shown to be sensitive to the atomic structure of clusters, the number of superatomic electrons, and the chemical nature of the dopant metal. Among the cubic-like structures, the strongest arom…
A Unified AMBER-Compatible Molecular Mechanics Force Field for Thiolate-Protected Gold Nanoclusters.
2016
We present transferable AMBER-compatible force field parameters for thiolate-protected gold nanoclusters. Five different sized clusters containing both organo-soluble and water-soluble thiolate ligands served as test systems in MD simulations, and parameters were validated against DFT and experimental results. The cluster geometries remain intact during the MD simulations in various solvents, and structural fluctuations and energetics showed agreement with DFT calculations. Experimental diffusion coefficients and crystal structures were also reproduced with sufficient accuracy. The presented parameter set contains the minimum number of cluster-specific parameters enabling the use of these p…