Search results for "Nanographene"
showing 8 items of 8 documents
Atomically Precise Distorted Nanographenes: The Effect of Different Edge Functionalization on the Photophysical Properties down to the Femtosecond Sc…
2023
Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-peri-hexabenzocoronene (HBC) derivatives obtained by atomically precise synthesis routes. They are constituted…
Heptagon-Containing Nanographene Embedded into [10]Cycloparaphenylene
2023
We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These r…
The photophysics of distorted nanographenes: Ultra-slow relaxation dynamics, memory effects, and delayed fluorescence
2023
The controlled deformation and engineering of the sp2 carbon network in atomically-precise nanographenes, and their substantially larger size as compared to typical optical dyes, opens new opportunities for the modulation of optical and electronic properties, but the peculiar photophysics of these systems is still poorly understood. Here, through a detailed comparative study of two well-defined distorted nanographenes, we show that they can exhibit interesting photophysical features, such as triplet-triplet annihilation delayed fluorescence, ultra-slow excited state dynamics, and excitation-wavelength memory effects on the nanosecond and sub-nanosecond relaxation cascades. Some of these beh…
Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration
2016
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different …
Excited states engineering enables efficient near-infrared lasing in nanographenes
2021
The spectral overlap between stimulated emission (SE) and absorption from dark states (i.e. charges and triplets) especially in the near-infrared (NIR), represents one of the most effective gain loss channel in organic semiconductors. Recently, bottom-up synthesis of atomically precise graphene nanostructures, or nanographenes (NGs), has opened a new route for the development of environmentally and chemically stable materials with optical gain properties. However, also in this case, the interplay between gain and absorption losses has hindered the attainment of efficient lasing action in the NIR. Here, we demonstrate that the introduction of two fluoranthene imide groups to the NG core lead…
Nanographenes: Ultrastable, Switchable, and Bright Probes for Super-Resolution Microscopy.
2019
Abstract Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and sta…
A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging.
2021
Dibenzo[hi,st]ovalene (DBOV) has excellent photophysical properties, including strong fluorescence and high ambient stability. Moreover, the optical blinking properties of DBOV have enabled optical super-resolution single-molecule localization microscopy with an imaging resolution beyond the diffraction limit. Various organic and inorganic fluorescent probes have been developed for super-resolution imaging, but those sensitive to pH and/or metal ions have remained elusive. Here, we report a diaza-derivative of DBOV (N-DBOV), synthesized in eight steps with a total yield of 15%. Nitrogen (N)-bearing zigzag edges were formed through oxidative cyclization of amino groups in the last step. UV-v…
On-Surface Synthesis of Dibenzohexacenohexacene and Dibenzopentaphenoheptaphene
2021
We report the on-surface synthesis and gas-phase theoretical studies of two novel nanographenes, namely, dibenzohexacenohexacene and dibenzopentaphenoheptaphene, using 8,8′-dibromo-5,5′-bibenzo[rst]pentaphene as a precursor. These nanographenes display a combination of armchair and zigzag edges, as shown by noncontact atomic force microscopy (nc-AFM), and their electronic properties are elucidated by density functional theory (DFT) calculations which reveal relatively low HOMO-LUMO energy gaps of about 1.75 eV.