Search results for "Nanomaterial"
showing 10 items of 330 documents
Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: New perspectives for antibiodeter…
2017
Background Nanotechnologies are currently revolutionizing the world around us, improving the quality of our lives thanks to a multitude of applications in several areas including the environmental preservation, with the biodeterioration phenomenon representing one of the major concerns. Results In this study, an innovative nanomaterial consisting of graphene nanoplatelets decorated by zinc oxide nanorods (ZNGs) was tested for the ability to inhibit two different pathogens belonging to bacterial genera frequently associated with nosocomial infections as well as biodeterioration phenomenon: the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. A time- and dose-…
Adsorbent phases with nanomaterials for in-tube solid-phase microextraction coupled on-line to liquid nanochromatography
2015
Following the present trends in miniaturization, a methodology that combines on-line In-Tube Solid-Phase Microextraction (IT-SPME) with Liquid Nanochromatography (nano-LC) and UV-vis diode array detection (DAD) was developed. This coupling was achieved by using two interconnected valves (i.e. conventional and micro-automatic valves) in the system of injection. As for IT-SPME, different materials, containing in some cases nanostructures or nanoparticles and in other cases polymeric adsorbent phases immobilized on capillary columns, were tested in order to improve extraction efficiencies of organic compounds; diclofenac was selected as the target analyte. Additionally, the transfer time of th…
Visible light photocatalytic activity of macro-mesoporous TiO2-CeO2inverse opals
2018
Macro-mesoporous TiO2 inverse opal materials were synthesized and they were tested as photocatalysts under visible light irradiation. The influence of cerium oxide addition towards the Rhodamine B (RhB) photodegradation activity was evaluated. Structural, textural, spectral and surface properties of the TiO2-CeO2 inverse opal nanocomposites were studied by XRD, XPS, SEM, TEM, N2 adsorption-desorption, Diffuse Reflectance UV–vis and Photoluminescence spectroscopies. Compared to commercial TiO2 anatase, the macro-mesoporous TiO2 inverse opal exhibited six times higher kinetic rate constant in the RhB degradation under visible light irradiation. The good photocatalytic activity was related to …
Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphyloco…
2017
In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more e…
Zinc oxide nanoparticles for therapeutic purposes in cancer medicine.
2020
The importance of zinc as a trace metal in the human body has long been overlooked. We now gradually discover that the impact of zinc on the health of our body might be as far-reaching as that of iron. Concurrently, nanomaterials containing zinc, in particular zinc oxide nanoparticles (ZnO NPs), are becoming increasingly attractive as innovative agents for medical applications. Zinc oxide is characterized by a good biocompatibility which allows the exploitation of its antibacterial, antifungal, antiviral, and anti-cancer qualities in a therapeutic setting. This perspective outlines the current state of knowledge concerning the interaction of zinc oxide nanoparticles with eukaryotic cells an…
Characterization and Quantitation of Carbon Black Nanomaterials in Polymeric and Biological Aqueous Dispersants by Asymmetrical Flow Field Flow Fract…
2021
Characterization of carbon black (CB) nanomaterials is required in industrial and research areas. Hence, in this study, asymmetrical flow field flow fractionation coupled to UV–vis and DLS detectors in series (AF4-UV–vis-DLS) was studied to evaluate the CB dispersion behavior in polymeric and biological dispersants, given the relevance of these media in practical applications. Under the experimental conditions, the results indicated that polymeric and biological dispersions showed size distributions with hydrodynamic diameters of 404 and 175 nm, respectively, for a particle core diameter of 40 nm. The polymeric dispersant provided lower stability as a function of time than that achieved by …
On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure.
2020
Abstract Chiral graphene nanoribbons represent an important class of graphene nanomaterials with varying combinations of armchair and zigzag edges conferring them unique structure‐dependent electronic properties. Here, we describe the on‐surface synthesis of an unprecedented cove‐edge chiral GNR with a benzo‐fused backbone on a Au(111) surface using 2,6‐dibromo‐1,5‐diphenylnaphthalene as precursor. The initial precursor self‐assembly and the formation of the chiral GNRs upon annealing are revealed, along with a relatively small electronic bandgap of approximately 1.6 eV, by scanning tunnelling microscopy and spectroscopy.
Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis
2015
We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in “the nanoworld”. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possib…
Functionalized Silica Nanomaterials as a New Tool for New Industrial Applications
2018
Abstract In this chapter, we report on the diverse applications of silica-based nanomaterials relevant for the food industry. The encapsulation of food ingredients and nutraceuticals and their use as antimicrobial agents and sensors has been explored. In the case of food ingredients, controlled-release materials responsive to pH changes and enzymes (i.e., proteases or esterases) are the main approximation. For antimicrobial agents, the materials are able to modulate the activity of the biocide, increasing the duration of the active substances. Also, an increase of the biocide activity up to ninefold and a broadening of the activity spectra have been observed for a capped material. Finally, …
The role of size and protein shells in the toxicity to algal photosynthesis induced by ionic silver delivered from silver nanoparticles
2019
Abstract Because of their biocide properties, silver nanoparticles (AgNPs) are present in numerous consumer products. The biocidal properties of AgNPs are due to both the interactions between AgNP and cell membranes and the release of dissolved silver (Ag+). Recent studies emphasized the role of different nanoparticle coatings in complexing and storing Ag+. In this study, the availability of dissolved silver in the presence of algae was assessed for three AgNPs with different silver contents (59%, 34% and 7% of total Ag), silver core sizes and casein shell thicknesses. The impact of ionic silver on the photosynthetic yield of Chlamydomonas reinhardtii was used as a proxy to estimate the amo…