Search results for "Nanoparticle"
showing 10 items of 2198 documents
Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles
2020
Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and a…
Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches
2014
Abstract. In recent years low molecular weight alkylamines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkylamines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography–mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkylamines in aerosol particles. Alkylamines were converted to carbamates through derivatization with isobutyl chlorof…
Composition-resolved size distributions of volcanic aerosols in the Mt. Etna plumes
2008
Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 μm) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 μm) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearl…
Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment
2022
Background: Cooking and fuel combustion in the indoor environment are major sources of respirable suspended particulate matter (RSPM), which is an excellent carrier of potentially harmful absorbed inorganic and organic compounds. Chronic exposure to RSPM can lead to acute pulmonary illness, asthma, cardiovascular disease, and lung cancer in people involved in cooking. Despite this, questions remain about the harmfulness of different particulate matter (PM) sources generated during cooking, and the factors influencing PM physico-chemical properties. The most reliable methods for sampling and analyzing cooking emissions remain only partially understood. Objectives: This review aims to compreh…
A predictive model for salt nanoparticle formation using heterodimer stability calculations
2021
Acid–base clusters and stable salt formation are critical drivers of new particle formation events in the atmosphere. In this study, we explore salt heterodimer (a cluster of one acid and one base) stability as a function of gas-phase acidity, aqueous-phase acidity, heterodimer proton transference, vapor pressure, dipole moment and polarizability for salts comprised of sulfuric acid, methanesulfonic acid and nitric acid with nine bases. The best predictor of heterodimer stability was found to be gas-phase acidity. We then analyzed the relationship between heterodimer stability and J4×4, the theoretically predicted formation rate of a four-acid, four-base cluster, for sulfuric acid salts ove…
Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100
2021
9 pags., 7 figs., 1 tab.
Amphiphilic Polysaccharide Block Copolymers for pH-Responsive Micellar Nanoparticles
2017
A full polysaccharide amphiphilic block copolymer was prepared from end group-functionalized dextrans using copper-mediated azide-alkyne click chemistry. Sufficient modification of the reducing end in both blocks was achieved by microwave-enhanced reductive amination in a borate-buffer/methanol solvent system. The combination of a hydrophilic dextran block with a hydrophobic acetalated dextran block results in an amphiphilic structure that turns water-soluble upon acid treatment. The material has a low critical micelle concentration and self-assembles in water to spherical micellar nanoparticles. The formed nanoparticles have a narrow size distribution below 70 nm in diameter and disassembl…
HPMA-Based Nanocarriers for Effective Immune System Stimulation.
2019
The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate-co-hymecromone-methacrylate allow the preparation of multifunctionalized core-crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18-MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle-in addition-via a click rea…
High performance composites containing perfluoropolyethers-functionalized carbon-based nanoparticles: Rheological behavior and wettability
2016
Abstract Ultra High Molecular Weight Polyethylene (UHMWPE) based composites filled with carbon nanotubes (CNTs) and carbon black (CB) modified by perfluoropolyethers (PFPE) have been formulated. All composites show a segregated morphology with nanofillers selectively localized at the polymer particle–particle interface. The composites rheological properties have been deeply investigated: the PFPE functionalities linked on CNTs facilitate the semi-3D nanofillers network formation in the composites that show a solid-like behaviour even at lower investigated filler contents, reaching the rheological percolation threshold at lower nanofiller content than bare CNTs filled composites. For composi…
Aqueous phase/nanoparticles interface: hydroxypropyl cellulose adsorption and desorption triggered by temperature and inorganic salts
2012
The study highlighted the main forces driving the adsorption of hydroxypropyl cellulose (HPC) onto clay nanoparticles with a disk-like shape (Laponite RD). Modeling the isothermal titration calorimetry data provided the key thermodynamic properties, which enabled us to discuss the microscopic aspects contributing to the energetic and the entropic changes of the polymer adsorption at the nanoparticle/liquid interface. We evidenced that the process is strongly enthalpy-driven and that the interactions lead to constraints of the HPC configuration at interface. The functionalized nanoparticles enhanced the polymer solubility in water expanding the one-phase area of the binodal curve. Temperatur…