Search results for "Nanoparticles"
showing 10 items of 1286 documents
Deposition of Cu Nanoparticles on the Surface of Metallic Aluminum
2012
Deposition of Cu particles by electrolysis at constant electrode potential and by internal electrolysis methods was investigated. The composition of deposited material was confirmed by optical and scanning electron microscope methods. Combination of electrolysis at constant electrode potential with internal electrolysis method was found most effective for fabrication of nanoparticle arrays. Single crystalline Cu particles are fabricated by internal electrolysis, while polycrystalline ones obtained by combined chronopotentiometric and internal electrolysis methods. The formation mechanism of Cu nanoparticles is described.
[Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster
2016
Engineering the surface ligands of metal nanoparticles is critical in designing unique arrangements of metal atoms. Here, we report the synthesis and total structure determination of a large box-shaped Ag67 nanocluster (NC) protected by a mixed shell of thiolate (2,4-dimethylbenzenethiolate, SPhMe2) and phosphine (triphenylphosphine, PPh3) ligands. Single crystal X-ray diffraction (SCXRD) and electrospray ionization mass spectrometry (ESI-MS) revealed the cluster formula to be [Ag67(SPhMe2)32(PPh3)8]3+. The crystal structure shows an Ag23 metal core covered by a layer of Ag44S32P8 arranged in the shape of a box. The Ag23 core was formed through an unprecedented centered cuboctahedron, i.e.,…
Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice
2013
In the present work biocompatible quercetin and curcumin nanovesicles were developed as a novel approach to prevent and restore skin tissue defects on chronic cutaneous pathologies. Stable and suitable quercetin- and curcumin-loaded phospholipid vesicles, namely liposomes and penetration enhancer-containing vesicles (PEVs), were prepared. Vesicles were made from a highly biocompatible mixture of phospholipids and alternatively a natural polyphenol, quercetin or curcumin. Liposomes were obtained by adding water, while PEVs by adding polyethylene glycol 400 and Oramix®CG110 to the water phase. Transmission electron microscopy, cryogenic-transmission electron microscopy and small- and wide-ang…
Catalytic properties of Ag-PolyaminoβCD NPs for reduction of nitroarenes
2014
The reduction of nitroarenes is a key reaction involved in the synthesis of several compounds such as drugs, pesticides or dyes. During the last years Pd and Ag NPs have been used as catalysts to carry out this reaction with NaBH4. However several mechanistic aspects of the process are still unclear; in particular there is not agreement about the kinetic order of these reactions, whether 0-th or 1-st order in the substrate[1]. The aim of this work is to use a novel catalytic systems constituted by Ag-NPs coated with different polyamino-βCDs (Figure 1)[2], to carry out the reduction of some aromatic nitrocompounds using NaBH4 as the reducing agent, and to determine the kinetic features of th…
Inhalable Formulation Based on Lipid–Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast
2022
Here, novel lipid-polymer hybrid nanoparticles (LPHNPs), targeted to lung macrophages, were realized as potential carriers for Roflumilast administration in the management of chronic obstructive pulmonary disease (COPD). To achieve this, Roflumilast-loaded fluorescent polymeric nanoparticles, based on a polyaspartamide-polycaprolactone graft copolymer, and lipid vesicles, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-(polyethylene glycol)-mannose, were properly combined using a two-step method, successfully obtaining Roflumilast-loaded hybrid fluorescent nanoparticles (Man-LPHFNPs@Roflumilast). These exhibit colloidal size and a ne…
Enhanced plasmonic processes in amino-rich plasma polymer films for applications at the biointerface
2021
A new plasmonic biosensor was developed in a planar chip-based format by coupling the plasmonic properties of gold nanoparticles (Au NPs) with the mechanical and bioadhesive features of unconventional organic thin films deposited from plasma, namely primary amine-based plasma polymer films (PPFs). A self-assembled layer of spherical Au NPs, 12 nm in diameter, was electrostatically immobilized onto optically transparent silanised glass. In the next step, the Au NP layer was coated with an 18 nm polymeric thick PPF layerviathe simultaneous polymerization/deposition of a cyclopropylamine (CPA) precursor performed by radio frequency discharge, both in pulsed and in continuous wave modes. The CP…
Inhalable nano into micro dry powders for ivacaftor delivery: The role of mannitol and cysteamine as mucus-active agents.
2020
In this paper the innovative approach of Nano into micro (NiM9 was developed to produce Nanoparticles loaded Ivacaftor to incorporate into mannitol or mannitol/cysteamine micromatrices for drug pulmonary administration in CF. Nanoparticles composed by a mixture of two polyhydrohydroxyethtylaspartamide copolymers containing a loading of Ivacaftor of 15.5 % w/w were produced. These Nanoparticles were incorporated into microparticles to obtain NiM that were characterized in terms of size and size distribution, interaction with CF-AM by rheological and turbidimetric studies as well as by aerodynamic diameter measurements. Finally the activity of Ivacaftor into these NiM was evaluated by in vitr…
Contribution of Molecular Structure to Self-Assembling and Biological Properties of Bifunctional Lipid-Like 4-(N-Alkylpyridinium)-1,4-Dihydropyridines
2019
The design of nanoparticle delivery materials possessing biological activities is an attractive strategy for the development of various therapies. In this study, 11 cationic amphiphilic 4-(N-alkylpyridinium)-1,4-dihydropyridine (1,4-DHP) derivatives differing in alkyl chain length and propargyl moiety/ties number and position were selected for the study of their self-assembling properties, evaluation of their cytotoxicity in vitro and toxicity on microorganisms, and the characterisation of their interaction with phospholipids. These lipid-like 1,4-DHPs have been earlier proposed as promising nanocarriers for DNA delivery. We have revealed that the mean diameter of freshly prepared nanoparti…
Plasmonic nanosensor array for multiplexed DNA-based pathogen detection
2019
In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…
Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protect…
2017
Abstract We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0–50 nm with a maximum standard deviation ±…