Search results for "Nanospheres"

showing 10 items of 10 documents

Conformational dynamics of a single protein monitored for 24 hours at video rate

2018

We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show “open” and “closed” conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3–4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer a…

0301 basic medicineLetterProtein ConformationMolecular ConformationFOS: Physical sciencesHsp90Bioengineeringsingle molecule02 engineering and technology7. Clean energyQuantitative Biology - Quantitative Methods03 medical and health sciencesMolecular dynamicsFluorescence Resonance Energy TransferNanotechnologyGeneral Materials ScienceHSP90 Heat-Shock ProteinsPhysics - Biological PhysicsQuantitative Methods (q-bio.QM)PlasmonPhysicsVideo rateMechanical EngineeringProtein dynamics92Biomolecules (q-bio.BM)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsGold nanospheres030104 developmental biologyFörster resonance energy transferQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)Chemical physicsFOS: Biological sciencesprotein dynamicsPlasmon rulernonergodicityGold0210 nano-technologyLinker
researchProduct

Retinol encapsulated into amorphous Ca2+ polyphosphate nanospheres acts synergistically in MC3T3-E1 cells

2015

Both the quality and quantity of collagen, the major structural component of the skin, decrease in aging skin. We succeeded to encapsulate retinol into amorphous inorganic polyphosphate (polyP) nanoparticles together with calcium ions ("aCa-polyP-NP"), under formation of amorphous Ca-polyP/retinol nanospheres ("retinol/aCa-polyP-NS"). The globular nanospheres are not cytotoxic, show an almost uniform size of ≈ 45 nm and have a retinol content of around 25%. Both components of those nanospheres, retinol and the aCa-polyP-NP, if administered together, caused a strong increase in proliferation of mouse calvaria MC3T3 cells. The expressions of collagen types I, II and III genes, but not the exp…

Chemistry PharmaceuticalRetinal bindingPharmaceutical ScienceEndocytosisCollagen Type IMiceCollagen Type IIIchemistry.chemical_compoundPolyphosphatesExtracellularAnimalsTechnology PharmaceuticalMC3T3Particle SizeVitamin ACollagen Type IICell ProliferationDrug CarriersDose-Response Relationship DrugCell growthSkullRetinolDrug Synergism3T3 CellsGeneral MedicineCalcium CompoundsEndocytosisUp-RegulationRetinol-Binding ProteinsRetinol binding proteinCollagen Type IIINanomedicineBiochemistrychemistryBiophysicsNanospheresProtein BindingBiotechnologyEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct

Bioinspired self-assembly of tyrosinase-modified silicatein and fluorescent core-shell silica spheres.

2014

Inspired by the intermolecular cross-linking of mussel foot proteins and their adhesive properties, tyrosinase has been used to modify recombinant silicatein. DOPA/DOPAquinone-mediated cross-linking and interfacial interactions enhanced both self-assembly of silicatein building blocks and templating of core–shell silica spheres, resulting in fluorescent biomimetic silicatein–silica hybrid mesofibers.

ChemistryMonophenol MonooxygenaseTyrosinaseBiophysicsNanotechnologySilicon DioxideBiochemistryFluorescenceCathepsinsPoriferaCore shellNanoporesBiomimetic MaterialsMaterials TestingMolecular MedicineAnimalsSelf-assemblyAdhesiveEngineering (miscellaneous)NanospheresBiotechnologyFluorescent DyesBioinspirationbiomimetics
researchProduct

Core–Shell Nanorod Columnar Array Combined with Gold Nanoplate–Nanosphere Assemblies Enable Powerful In Situ SERS Detection of Bacteria

2016

Development of a label-free ultrasensitive nanosensor for detection of bacteria is presented. Sensitive assay for Gram-positive bacteria was achieved via electrostatic attraction-guided plasmonic bifacial superstructure/bacteria/columnar array assembled in one step. Dynamic optical hotspots were formed in the hybridized nanoassembly under wet-dry critical state amplifying efficiently the weak vibrational modes of three representative food-borne Gram-positive bacteria, that is, Staphylococcus xylosus, Listeria monocytogenes, and Enterococcus faecium. These three bacteria with highly analogous Raman spectra can be effectively differentiated through droplet wet-dry critical SERS approach combi…

In situMaterials scienceGram-positive bacteriata221Nanotechnology02 engineering and technologySpectrum Analysis Raman010402 general chemistry01 natural sciencessymbols.namesakeNanosensorGeneral Materials Scienceta318PlasmonNanotubesbiology3D PCASERSStaphylococcus xylosusGram-positive bacteria021001 nanoscience & nanotechnologybiology.organism_classificationListeria monocytogenesnanoarray0104 chemical sciencessymbolsNanorodGoldsuperstructure0210 nano-technologyRaman spectroscopyNanospheresBacteriaACS Applied Materials and Interfaces
researchProduct

Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells

2012

Abstract Background The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (1…

MaleHealth Toxicology and Mutagenesis610 MedizinMetal Nanoparticles02 engineering and technologyToxicology01 natural scienceschemistry.chemical_compoundCoated Materials Biocompatible610 Medical sciencesQDCitratesCytotoxicityGeneral Medicine021001 nanoscience & nanotechnologyEndothelial stem cellmedicine.anatomical_structureColloidal goldBlood-Brain Barrier0210 nano-technologyNanospheresMaterials scienceEndotheliumCell SurvivalForeskinlcsh:Industrial hygiene. Industrial welfare010402 general chemistrySodium CitrateCell LineMicroscopy Electron Transmissionlcsh:RA1190-1270Sodium citratemedicineHumansViability assayParticle Sizelcsh:Toxicology. PoisonsCell ProliferationResearchCytoplasmic VesiclesEpithelial CellsQPIn vitro0104 chemical scienceschemistryCell culture[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologieImmunologyBiophysics[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologieEndothelium VascularGoldlcsh:HD7260-7780.8
researchProduct

Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis

2012

The aim of this study was to evaluate the passive and iontophoretic permeation of triclosan in human skin using a triclosan solution and triclosan-loaded cationic nanospheres in order to determine which of the two strategies is more effective in allowing the deposition of triclosan within the skin. Triclosan-loaded nanospheres were prepared by the emulsification-solvent displacement technique using aminoalkyl methacrylate (Eudragit® RL 100) as polymer matrix. Nanospheres of 261.0 ± 15.1 nm with a positive surface charge (Ψz = 26.0 ± 3.2 mV) were obtained. Drug loading was 62.0 ± 1.7%. Results demonstrated that the amount of triclosan retained within the skin was significantly greater (8.5-f…

Materials sciencePharmaceutical ScienceBioengineeringHuman skinMethacrylateDiffusionchemistry.chemical_compoundColloid and Surface ChemistryParticle SizePhysical and Theoretical ChemistrySolubilityChromatography High Pressure LiquidSkinChromatographyIontophoresisOrganic ChemistryCationic polymerizationIontophoresisPermeationControlled releaseTriclosanTriclosanSolubilitychemistryMicroscopy Electron ScanningNanospheresJournal of Microencapsulation
researchProduct

Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres

2020

Doxorubicin is a widely used but toxic cancer chemotherapeutic agent. In order to localize its therapeutic action and minimize side effects, it was covalently conjugated to peptide-encapsulated gold nanospheres by click-chemistry and then photo-released in a controlled fashion by a multiphoton process. Selective treatment of a chosen region in a 2D layer of U2Os cancer cells is shown by driving photorelease with 561 nm irradiation at mu W power. These results show promising directions for the development of practical applications based on nanocarriers that can ensure drug delivery with high spatial and temporal control.

Materials scienceTherapeutic actionBiomedical EngineeringCancerNanotechnologyGeneral ChemistryGeneral MedicineConjugated systemGold nanospheresmedicine.diseaseDrug deliveryCancer cellmedicineGeneral Materials ScienceDoxorubicinNanocarriersmedicine.drug
researchProduct

Self-assembled FeCo/gelatin nanospheres with rapid magnetic response and high biomolecule-loading capacity.

2009

Materials sciencefood.ingredientTime FactorsIronNanoparticleNanotechnologyGelatinSelf assembledBiomaterialsMagneticsfoodAnimalsGeneral Materials Sciencechemistry.chemical_classificationBiomoleculeGeneral ChemistryMagnetic responseCobaltDNAchemistryDrug deliveryThermogravimetryGelatinSelf-assemblyNanospheresBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Molecule non-radiative coupling to a metallic nanosphere: an optical theorem treatment.

2009

The non-radiative coupling of a molecule to a metallic spherical particle is approximated by a sum involving particle quasistatic polarizabilities. We demonstrate that energy transfer from molecule to particle satisfies the optical theorem if size effects corrections are properly introduced into the quasistatic polarizabilities. We hope that this simplified model gives valuable information on the coupling mechanism between molecule and metallic nanos-tructures available for, e.g., surface enhanced spectroscopy signal analysis.

Optical Rotationoptical theoremMetal NanoparticlesSpectrum Analysis RamanMolecular physicsCatalysislcsh:ChemistryInorganic ChemistryComputational chemistryRadiative transferMoleculePhysical and Theoretical ChemistryOptical rotationPhysics::Chemical PhysicsParticle SizeSpectroscopylcsh:QH301-705.5Molecular BiologySpectroscopyPhysicsCouplingenergy transferCommunicationOrganic ChemistryOptical theoremGeneral MedicineComputer Science Applicationsplasmon modeslcsh:Biology (General)lcsh:QD1-999Models Chemicalsurface enhanced spectroscopyParticleGoldQuasistatic processAlgorithmsNanospheresInternational journal of molecular sciences
researchProduct

Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds

2018

We report a novel multi-step method for the preparation of ordered mesoporous titania scaffolds and show an illustrative example of their application to solar cells. The method is based on (monolayer) colloidal nanosphere lithography that makes use of polystyrene nanoparticles organised at a water–air interface and subsequently transferred onto a solid substrate. A titania precursor solution (titanium(IV) isopropoxide in ethanol) is then drop-cast onto the monolayer and left to “incubate” overnight. Surprisingly, instead of the expected inverse monolayer-structure, a subsequent calcination step of the precursor yields an ordered monolayer of hollow titania nanospheres with a wall thickness …

X ray diffractionX ray photoelectron spectroscopySolar cellMonolayer structureWater-air interfaceMonolayerPhase interfaceSettore ING-INF/01NanocrystalPerovskiteNanocrystalline anatasePerovskite solar cellPolystyrene nanoparticlePower conversion efficienciePrecursor solutionNanoparticleTitanium compoundInterfaces (materials)Interfaces (materials); Monolayers; Nanocrystals; Nanoparticles; Nanospheres; Perovskite; Perovskite solar cells; Phase interfaces; Polystyrenes; Scaffolds (biology); Solar cells; Titanium compounds; Titanium dioxide; X ray diffraction; Monolayer structures; Nano Sphere Lithography; Nanocrystalline anatase; Polystyrene nanoparticles; Power conversion efficiencies; Precursor solutions; Titania nanospheres; Water-air interface; X ray photoelectron spectroscopyTitanium dioxideScaffolds (biology)Nano Sphere LithographyNanospherePolystyreneTitania nanosphere
researchProduct