Search results for "Nap"
showing 10 items of 2226 documents
Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II
2016
Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell ad…
Central nervous system involvement in ALK-rearranged NSCLC : promising strategies to overcome crizotinib resistance
2016
ABSTRACT: Introduction: ALK rearranged Non Small Cell Lung Cancers (NSCLCs) represent a distinct subgroup of patients with peculiar clinic-pathological features. These patients exhibit dramatic responses when treated with the ALK tyrosine kinase inhibitor Crizotinib, albeit Central Nervous System (CNS) activity is much less impressive than that observed against extracranial lesions. CNS involvement has become increasingly observed in these patients, given their prolonged survival. Several novel generation ALK inhibitors have been developing to increase CNS penetration and to provide more complete ALK inhibition. Areas covered: The CNS activity of Crizotinib and novel generation ALK inhibito…
Cannabinoid Control of Learning and Memory through HCN Channels
2016
The mechanisms underlying the effects of cannabinoids on cognitive processes are not understood. Here we show that cannabinoid type-1 receptors (CB1Rs) control hippocampal synaptic plasticity and spatial memory through the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that underlie the h-current (Ih), a key regulator of dendritic excitability. The CB1R-HCN pathway, involving c-Jun-N-terminal kinases (JNKs), nitric oxide synthase, and intracellular cGMP, exerts a tonic enhancement of Ih selectively in pyramidal cells located in the superficial portion of the CA1 pyramidal cell layer, whereas it is absent from deep-layer cells. Activation of the CB1R-HCN pathway impairs d…
Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters
2018
Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile…
An Attachment-Independent Biochemical Timer of the Spindle Assembly Checkpoint.
2017
The spindle assembly checkpoint (SAC) generates a diffusible protein complex that prevents anaphase until all chromosomes are properly attached to spindle microtubules. A key step in SAC initiation is the recruitment of MAD1 to kinetochores, which is generally thought to be governed by the microtubule-kinetochore (MT-KT) attachment status. However, we demonstrate that the recruitment of MAD1 via BUB1, a conserved kinetochore receptor, is not affected by MT-KT interactions in human cells. Instead, BUB1:MAD1 interaction depends on BUB1 phosphorylation, which is controlled by a biochemical timer that integrates counteracting kinase and phosphatase effects on BUB1 into a pulse-generating incohe…
A role for TASK2 channels in the human immunological synapse.
2020
The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune p…
Heterozygous deletion of the LRFN2 gene is associated with working memory deficits
2016
International audience; Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective w…
Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats
2019
Abstract Endocannabinoids (eCBs) and serotonin (5-HT) play a neuromodulatory role in the central nervous system. Both eCBs and 5-HT regulate neuronal excitability and their pharmacological potentiation has been shown to control seizures in pre-clinical and human studies. Compelling evidence indicates that eCB and 5-HT systems interact to modulate several physiological and pathological brain functions, such as food intake, pain, drug addiction, depression, and anxiety. Nevertheless, there is no evidence of an eCB/5-HT interaction in experimental and human epilepsies, including status epilepticus (SE). Here, we performed video-EEG recording in behaving rats treated with the pro-convulsant age…
Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex.
2019
In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortic…
Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress
2016
Abstract Introduction Chronic stress induces dendritic atrophy and decreases spine density in excitatory hippocampal neurons, although there is also ample evidence indicating that the GABAergic system is altered in the hippocampus after this aversive experience. Chronic stress causes dendritic remodeling both in excitatory neurons and interneurons in the medial prefrontal cortex and the amygdala. Methods In order to know whether it also has an impact on the structure and neurotransmission of hippocampal interneurons, we have analyzed the dendritic arborization, spine density, and the expression of markers of inhibitory synapses and plasticity in the hippocampus of mice submitted to 21 days …