Search results for "Natural fiber"

showing 10 items of 52 documents

Mechanical behavior of carbon/flax hybrid composites for structural applications

2012

In this work, the influence of an unidirectional carbon fabric layer on the mechanical performances of bidirectional flax fabric/epoxy composites used for structural applications was studied. Two different bidirectional flax fabrics were used to produce flax fabric reinforced plastic (FFRP) laminates by a vacuum bagging process: one is normally used to make curtains; the other, heavier and more expensive than the previous one, is usually used as reinforcement in composite structures. In order to realize hybrid structures starting from FFRP, an unidirectional UHM carbon fabric was used to replace a bidirectional flax fabric. Tensile and three-point bending tests were performed to evaluate t…

Hybrid composite natural fiber mechanical properties vacuum baggingMaterials scienceMechanical EngineeringCarbon fibersHybrid compositevacuum baggingEpoxymechanical propertiesnatural fiberSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of Materialsvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumComposite materialLayer (electronics)Hybrid composite; mechanical properties; natural fiber; vacuum baggingNatural fiber
researchProduct

Influence of the anisotropy of sisal fibers on the mechanical properties of high performance unidirectional biocomposite lamina and micromechanical m…

2021

Abstract High performance biocomposites reinforced by sisal fibers, are between the most promising materials that could be used in various fields, from automotive to civil constructions, thanks to their good mechanical performance, as well as to the low cost and the great availability of the fiber. Nevertheless, at present their practical use is prevented by the limited knowledge of their mechanical performance. The results of the present study have shown that the intimate fibrillar structure of the sisal fiber is associated with a high anisotropy involving not only the elastic parameters, but also the damage processes with typical fiber splitting phenomena, that influence noticeably the bi…

LaminaMaterials scienceBiocomposite Natural fibers Anisotropy Micro-mechanics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesShear (sheet metal)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineMechanics of MaterialsUltimate tensile strengthCeramics and CompositesFiberBiocompositeComposite material0210 nano-technologyAnisotropycomputerSisal fiberSISALcomputer.programming_languageComposites Part A: Applied Science and Manufacturing
researchProduct

Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map

2018

Abstract This paper represents the first effort aimed to the investigation of the pin/hole contact stress and failure mechanisms of epoxy composites reinforced with woven flax fabrics, underwent to tensile bearing tests. In particular, the maximum loads and failure modes are evaluated at varying the laminate geometrical configuration. In order to optimize the use of polymer composites reinforced with flax fibers in structural applications, an experimental failure map, identifying main failure modes of mechanically fastened joints, is obtained as function of hole diameter, distance of the hole from the free edge of the laminate and laminate width. Moreover, a theoretical approach based on th…

Materials science02 engineering and technologyMechanical jointFlax compositeIndustrial and Manufacturing Engineeringlaw.inventionFlax fiber0203 mechanical engineeringlawUltimate tensile strengthComposite materialBearing (mechanical)Mechanical EngineeringFailure modeEpoxyComposite laminates021001 nanoscience & nanotechnologyBearing; Failure modes; Flax composites; Mechanical joints; Natural fibers; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsContact mechanicsMechanics of Materialsvisual_artMechanical jointBearingCeramics and CompositesFracture (geology)visual_art.visual_art_mediumNatural fibers0210 nano-technologyComposites Part B: Engineering
researchProduct

Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers

2020

Abstract Due to its good mechanical characteristics, low cost and high availability in the current market, sisal fiber is one of the most used for the manufacturing of biocomposites in various industrial fields (automotive, marine, civil construction etc.). The particular sub-fibrillar structure of the sisal fiber (similar to aramid fibers) and the corresponding anisotropic behavior detected by recent research activities, suggest that such biocomposites should exhibit also high impact strength, in such a way to permit their advantageously use also for the manufacturing of crashworthy components (bumpers, helmets, protection systems etc.), that are at the same time also eco-friendly, lightwe…

Materials scienceBiocomposites Natural fibers Sisal Impact strength Computed tomography02 engineering and technologyImpact testImpact strengthSisalSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchine0203 mechanical engineeringFiberComposite materialComputed tomographySISALCivil and Structural Engineeringcomputer.programming_languageBiocompositesBiocomposites Computed tomography Impact strength Natural fibers SisalIzod impact strength testEpoxy021001 nanoscience & nanotechnologyAramid020303 mechanical engineering & transportsvisual_artVolume fractionCeramics and Compositesvisual_art.visual_art_mediumNatural fibersBiocomposite0210 nano-technologycomputerComposite Structures
researchProduct

Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers

2020

Abstract Nowadays, there is a growing need to reduce the environmental impact generated by the use of inorganic materials for building applications. The aim of this work is to investigate the bio-lime based mortar flexural toughness improvement due to the addition of common reed fibers (Arundo donax L.) in order to evaluate their possible application as ductile eco-compatible prefabricated bricks or laying and joint mortars for masonry. Different sets of specimens were tested by varying the fiber weight content and the fiber length. Moreover, chemical treatments with Linseed Oil and Polyethylene glycol (PEG) were performed to improve the physical and mechanical properties of the fibers as w…

Materials scienceChemical treatmentsArundo donax L.Materials Science (miscellaneous)0211 other engineering and technologies020101 civil engineering02 engineering and technologyBendingPercentage of fibersengineering.material0201 civil engineeringFlexural strength021105 building & constructionlcsh:TA401-492FiberComposite materialJoint (geology)Tensile testingbusiness.industryHydraulic limeFiber lengthMasonrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiengineeringFlexural toughnesslcsh:Materials of engineering and construction. Mechanics of materialsMortarNatural fibersbusinessCase Studies in Construction Materials
researchProduct

Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment

2019

Abstract Aim of the current study is to investigate how an innovative and eco-friendly chemical treatment based on sodium bicarbonate solution (10 wt%) can improve the aging resistance in marine environment of epoxy based composites, reinforced with flax and jute fibers. To this scope, treated and untreated fiber reinforced composites were manufactured through vacuum infusion technique. The resulting composites were then exposed to salt-fog spray conditions up to 60 days, according to ASTM B117 standard. The assessment of their durability was made by means of tensile, flexural quasi-static tests and Charpy impact tests. Furthermore, the water uptake evolution of each composite was monitored…

Materials sciencePolymers and PlasticsCharpy impact test02 engineering and technologyFiber-reinforced composite010402 general chemistry01 natural sciencesJutechemistry.chemical_compoundFlexural strengthFlaxUltimate tensile strengthSalt-fog expositionComposite materialSodium bicarbonate treatmentNatural fiberMarine environmentSodium bicarbonateOrganic ChemistryEpoxy021001 nanoscience & nanotechnologyDurabilityFlax; Green composites; Jute; Marine environment; Salt-fog exposition; Sodium bicarbonate treatment0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumGreen composite0210 nano-technology
researchProduct

Pinned hybrid glass-flax composite laminates aged in salt-fog environment: Mechanical durability

2019

The aim of the present paper is to study the mechanical performance evolution of pinned hybrid glass-flax composite laminates under environment aging conditions. Hybrid glass-flax fibers/epoxy pinned laminates were exposed to salt-spray fog environmental conditions up to 60 days. With the purpose of assessing the relationship between mechanical performances and failure mechanisms at increasing aging time, single lap joints at varying joint geometry (i.e., hole diameter D and hole distance E from free edge) were characterized after 0 days (i.e., unaged samples), 30 days, and 60 days of salt-fog exposition. Based on this approach, the property&ndash

Materials sciencePolymers and PlasticsComposite number02 engineering and technologyBearing; Failure modes; Glass-flax hybrid coposites; Pinned joints; Salt fog aging010402 general chemistry01 natural sciencesFailure modesArticlelcsh:QD241-441lcsh:Organic chemistryFlexural strengthGlass-flax hybrid copositesComposite materialJoint (geology)Natural fiberPinned jointsFailure modeGeneral ChemistryEpoxyComposite laminates021001 nanoscience & nanotechnologyDurabilityGlass-flax hybrid compositePinned joint0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiLap jointSalt fog agingvisual_artBearingvisual_art.visual_art_medium0210 nano-technology
researchProduct

Physicomechanical properties of composites from recycled polyethylene and linen yarn production wastes

1999

The possibilities of utilizing wastes of linen thread production (chaffs, spinning and roving losses) in recycled polyolefin composites have been investigated. The wastes were mixed with recycled polyethylenes (produced from domestic and industrial film production wastes). The physicomechanical properties (tensile strength, bending and tensile moduli, and water resistance) and the fluidity (melt flow-behavior index) for systems with a different filler content are estimated. Almost all the composite materials obtained have satisfactory fluidity (melt flow-behavior index is not lower than 0.07–0.15 dg/min). For all types of the composites, a slight increase in tensile strength and a considera…

Materials sciencePolymers and PlasticsGeneral MathematicsPolyethyleneCondensed Matter PhysicsIndustrial wastePolyolefinBiomaterialschemistry.chemical_compoundFlexural strengthchemistryMechanics of MaterialsUltimate tensile strengthCeramics and CompositesComposite materialSpinningNatural fiberMelt flow indexMechanics of Composite Materials
researchProduct

Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications

2018

The investigation for natural fibers composites in terms of performance, durability, and environmental impact for structural applications in marine environments is a relevant challenge in scientific and industrial field. On this context, the aim of this work is to assess the durability and mechanical stability in severe environment of epoxy/glass–flax hybrid composites. For the sake of comparison, also full flax and glass epoxy composites were investigated. All samples were exposed to salt–fog environmental conditions up to 60 aging days. Wettability behavior during time was compared with water uptake evolution to assess water sensitivity of hybrid composite configurations. Moreover, quasi-…

Materials sciencePolymers and PlasticsGlass fiber02 engineering and technologyGeneral ChemistryComposite laminates010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesDurability0104 chemical sciencesSurfaces Coatings and Filmsnatural fibershybrid compositeMaterials Chemistrydurabilitymechanical propertieComposite material0210 nano-technologydurability; glass fibers; hybrid composites; mechanical properties; natural fibers; Chemistry (all); Surfaces Coatings and Films; Polymers and Plastics; Materials Chemistry2506 Metals and Alloysglass fiberJournal of Applied Polymer Science
researchProduct

An Innovative Treatment Based on Sodium Citrate for Improving the Mechanical Performances of Flax Fiber Reinforced Composites

2021

The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating …

Materials sciencePolymers and PlasticsScanning electron microscopeflaxchemical treatmentCharpy impact test02 engineering and technologymechanical properties010402 general chemistrysodium citrate01 natural sciencesArticlefiber–matrix adhesionlcsh:QD241-441chemistry.chemical_compoundnatural fiberslcsh:Organic chemistryFlexural strengthUltimate tensile strengthSodium citrateComposite materialFourier transform infrared spectroscopyGeneral ChemistryDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical treatment Fiber-matrix adhesion Flax Mechanical properties Natural fibers Sodium citrateSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryVoid (composites)0210 nano-technologyPolymers
researchProduct