Search results for "Neon"

showing 10 items of 760 documents

Lack of Dystrophin Affects Bronchial Epithelium inmdxMice

2016

Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower…

musculoskeletal diseases0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesmedicine.medical_specialtyTUNEL assayPhysiologyDuchenne muscular dystrophyRegeneration (biology)Clinical BiochemistryCell BiologyBiologymedicine.diseaseEpithelium03 medical and health sciences030104 developmental biologyEndocrinologymedicine.anatomical_structureApoptosisInternal medicineImmunologymedicinebiology.proteinRespiratory epitheliumMuscular dystrophyDystrophinJournal of Cellular Physiology
researchProduct

Interaction of allopurinol with phenprocoumon in man.

1977

Conditions in two patients on long-term phenprocoumon (Marcumar®) treatment are reported who had signs of phenprocoumon overdosage when given simultaneously allopurinol. The determination of phenprocoumon plasma concentrations in one patient showed that phenprocoumon accumulates for several weeks during treatment with allopurinol. Signs of phenprocoumon overdosage thus can appear long time after starting allopurinol treatment.

musculoskeletal diseasesAdultMalecongenital hereditary and neonatal diseases and abnormalitiesAllopurinolMyocardial InfarctionAllopurinolPharmacologyPhenprocoumonDrug DiscoveryMedicineHumansDrug InteractionsBlood CoagulationGenetics (clinical)integumentary systembusiness.industrynutritional and metabolic diseasesGeneral Medicine4-HydroxycoumarinsDrug interactionMiddle AgedPlasma concentrationPhenprocoumonMolecular MedicineBlood Coagulation TestsbusinessMathematicsmedicine.drugKlinische Wochenschrift
researchProduct

Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.

2015

International audience; Myotonic dystrophy type 1 (DM1) is caused by an unstable expanded CTG repeat located within the DMPK gene 3'UTR. The nature, severity and age at onset of DM1 symptoms are very variable in patients. Different forms of the disease are described, among which the congenital form (CDM) is the most severe. Molecular mechanisms of DM1 are well characterized for the adult form and involve accumulation of mutant DMPK RNA forming foci in the nucleus. These RNA foci sequester proteins from the MBNL family and deregulate CELF proteins. These proteins are involved in many cellular mechanisms such as alternative splicing, transcriptional, translational and post-translational regul…

musculoskeletal diseasesCCAAT-Enhancer-Binding Protein-deltacongenital hereditary and neonatal diseases and abnormalities[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiologylcsh:MedicineMice Transgenic[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human genetics[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMyotonin-Protein KinaseMice[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]AnimalsHumansMyotonic DystrophyRNA AntisenseRNA Messengerlcsh:ScienceMuscle SkeletalCell NucleusMyocardiumlcsh:R[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyBrainGene Expression Regulation DevelopmentalRNA-Binding Proteins[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyEmbryo MammalianAlternative SplicingDisease Models Animal[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAnimals Newborn[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:QTrinucleotide Repeat ExpansionSignal TransductionResearch ArticlePloS one
researchProduct

Gastric emptying, small intestinal transit and fecal output in dystrophic (mdx) mice.

2009

Duchenne muscular dystrophy (DMD), which results from deficiency in dystrophin, a sarcolemma protein of skeletal, cardiac and smooth muscle, is characterized by progressive striated muscle degeneration, but various gastrointestinal clinical manifestations have been observed. The aim was to evaluate the possible impact of the dystrophin loss on the gastrointestinal propulsion in mdx mice (animal model for DMD). The gastric emptying of a carboxymethyl cellulose/phenol red dye non-nutrient meal was not significantly different at 20 min from gavaging between wild-type and mdx mice. The intestinal transit and the fecal output were significantly decreased in mdx versus normal animals, although th…

musculoskeletal diseasesCell physiologyDuchenne muscular dystrophyMalecongenital hereditary and neonatal diseases and abnormalitiesmdx mousemedicine.medical_specialtyPhysiologyDuchenne muscular dystrophySettore BIO/09 - FisiologiaMiceIn vivoInternal medicineIntestine SmallMedicineAnimalsmdx mouseMuscular dystrophyDefecationSarcolemmabiologyGastric emptyingbusiness.industryMuscular Dystrophy Animalmusculoskeletal systemmedicine.diseaseMice Inbred C57BLDisease Models AnimalEndocrinologyGastric Emptyingbiology.proteinFecal outputMice Inbred mdxIntestinal transitbusinessDystrophinGastrointestinal MotilityThe journal of physiological sciences : JPS
researchProduct

Dystroglycan regulates structure, proliferation and differentiation of neuroepithelial cells in the developing vertebrate CNS.

2007

AbstractIn the developing CNS α- and β-dystroglycan are highly concentrated in the endfeet of radial neuroepithelial cells at the contact site to the basal lamina. We show that injection of anti-dystroglycan Fab fragments, knockdown of dystroglycan using RNAi, and overexpression of a dominant-negative dystroglycan protein by microelectroporation in neuroepithelial cells of the chick retina and optic tectum in vivo leads to the loss of their radial morphology, to hyperproliferation, to an increased number of postmitotic neurons, and to an altered distribution of several basally concentrated proteins. Moreover, these treatments also altered the oriented growth of axons from retinal ganglion c…

musculoskeletal diseasesCentral Nervous Systemcongenital hereditary and neonatal diseases and abnormalitiesmedicine.medical_specialtySuperior Colliculianimal structuresCellular differentiationNeuroepithelial CellsStem cellsDevelopmentDystrophin-associated protein complexRetinal ganglionAxonal growthMuscular DystrophiesRetina03 medical and health sciences0302 clinical medicineInternal medicineDystroglycanmedicineAnimalsDystroglycansMolecular BiologyCell Shape030304 developmental biologyCell Proliferation0303 health sciencesRetinabiologyfungiCell DifferentiationCell BiologyMuscular dystrophymusculoskeletal systemCell biologyNeuroepithelial cellmedicine.anatomical_structureEndocrinologyRNAiVertebratesbiology.proteinBasal laminaPikachurinStem cellChickens030217 neurology & neurosurgeryDevelopmental BiologyDevelopmental biology
researchProduct

Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle

2021

Abstract Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models and in vitro two-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dim…

musculoskeletal diseasesDistròfia muscularcongenital hereditary and neonatal diseases and abnormalitiesCellular differentiation0206 medical engineeringBiomedical EngineeringBioengineering02 engineering and technologyBiologyBiochemistryMyotonic dystrophyBiomaterials3D cell culturemedicineMyocyteTissue engineeringMyopathyMyogenesisSkeletal muscleGeneral MedicineMuscular dystrophy021001 nanoscience & nanotechnologymedicine.disease020601 biomedical engineering3. Good healthCell biologymedicine.anatomical_structureEnginyeria de teixitsCell culturemedicine.symptom0210 nano-technologyBiotechnologyBiofabrication
researchProduct

Mechanical activity of small and large intestine in normal and mdx mice: a comparative analysis.

1999

The aim of this study was to compare the motor pattern (recorded as changes in intraluminal pressure) of isolated duodenum and proximal colon between dystrophic mdx and normal mice. When duodenal recordings from control preparations were compared with mdx mice there was no significant difference in the spontaneous motor pattern, responses to electrical nerve stimulation or sensitivity to pharmacological agents. Colonic segments from mdx mice showed a more complex motor pattern, consisting of contractions with amplitude and frequency similar to those of controls and by additional contractions with lower amplitude and higher frequency. Moreover, 70% of the colonic preparations from mdx mice d…

musculoskeletal diseasesMalecongenital hereditary and neonatal diseases and abnormalitiesmedicine.medical_specialtyNerve stimulationPhysiologyColonDuodenumDuchenne muscular dystrophyIn Vitro TechniquesInhibitory postsynaptic potentialNitric oxidechemistry.chemical_compoundMiceReference ValuesInternal medicineIntestine SmallmedicineAnimalsLarge intestineProximal colonIntestine LargeEndocrine and Autonomic SystemsChemistrySignificant differenceGastroenterologyAnatomyMuscular Dystrophy Animalmusculoskeletal systemmedicine.diseaseElectric StimulationBiomechanical PhenomenaMice Inbred C57BLmedicine.anatomical_structureEndocrinologyDuodenumMice Inbred mdxGastrointestinal MotilityNeurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society
researchProduct

Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeabi…

2014

Background Dietary approaches to control inflammatory bowel diseases (IBD) may include proanthocyanidin-rich foods. Our previous research showed that a hydrophilic extract from Sicilian pistachio nut (HPE) contains sub- stantial amounts of proanthocyanidins and possesses anti- inflammatory activities. Purpose We studied the effects of HPE and of its poly- meric proanthocyanidin fraction (PPF) in a cell model that simulated some conditions of IBD, consisting of interleukin (IL)-1b-stimulated Caco-2 cells. Methods HPE was prepared by Pistacia vera L. nuts, and PPF was isolated from HPE by adsorbance chromatogra- phy. Proanthocyanidins were quantified as anthocyanidins after acidic hydrolysis.…

musculoskeletal diseasesPistachio nut Inflammation Intestinal epithelium Polyphenols Proanthocyanidinscongenital hereditary and neonatal diseases and abnormalitiesCellInterleukin-1betaAnti-Inflammatory AgentsMedicine (miscellaneous)BiologyPharmacologyPermeabilityCell membraneSettore BIO/10 - BiochimicamedicineHumansNutsProanthocyanidinsViability assayIntestinal MucosaCell ProliferationNutrition and DieteticsPistaciaInterleukin-6Interleukin-8NF-kappa BEpithelial Cellsbiology.organism_classificationIntestinal epitheliumIntestinesmedicine.anatomical_structureProanthocyanidinBiochemistryCaco-2Cyclooxygenase 2Paracellular transportPistaciaCaco-2 Cells
researchProduct

The revised ghent nosology; reclassifying isolated ectopia lentis

2014

Inherited ectopia lentis (EL) is most commonly caused by Marfan syndrome (MFS), a multisystemic disorder caused by mutations in FBN1. Historically the diagnosis for patients with EL who have no systemic features of MFS is isolated EL (IEL). However, the Ghent nosology for MFS was updated in 2010 and made some important alterations. In particular, patients with EL and a FBN1 mutation are now categorically diagnosed with MFS, if their mutation has previously been described with aortic dilation/dissection. This carries significant systemic implications, as many patients previously diagnosed with IEL are now reclassified. We provide a review of all published cases of IEL caused by FBN1 mutation…

musculoskeletal diseasesProbandMarfan syndromeNosologycongenital hereditary and neonatal diseases and abnormalitiesPediatricsmedicine.medical_specialtybusiness.industrymedicine.disease3. Good healthDissectionGeneticsMedicineIn patientChinese familyAortic dilationbusinessEctopia lentisGenetics (clinical)Clinical Genetics
researchProduct

Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model

2012

SummaryMyotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of…

musculoskeletal diseasesSarcomerescongenital hereditary and neonatal diseases and abnormalitiesNeuroscience (miscellaneous)lcsh:MedicineMedicine (miscellaneous)RNA-binding proteinGenes InsectBiologyMyotonic dystrophyGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically Modifiedchemistry.chemical_compoundImmunology and Microbiology (miscellaneous)RNA interferencelcsh:PathologymedicineMBNL1AnimalsDrosophila ProteinsHumansMyotonic DystrophyGeneticsMuscleslcsh:RAlternative splicingNuclear ProteinsRNA-Binding ProteinsEpistasis Geneticmedicine.diseaseDisease Models AnimalchemistryGene Knockdown TechniquesDrosophilaFemaleRNA InterferenceTrinucleotide repeat expansionTrinucleotide Repeat ExpansionDrosophila Proteinlcsh:RB1-214Genetic screenResearch ArticleDisease Models & Mechanisms
researchProduct