Search results for "Nerve"

showing 10 items of 1683 documents

New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation

2018

AbstractThe development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for…

0301 basic medicineNeurobiologia del desenvolupamentScienceHippocampusNerve Tissue ProteinsSemaphorinsBiologyHippocampal formationHippocampusArticle03 medical and health sciencesMice0302 clinical medicineSemaphorinmedicineAnimalsDevelopmental neurobiologyProgenitor cellReceptorCells CulturedGlycoproteinsNeuronsMultidisciplinaryMembrane GlycoproteinsHippocampus properDentate gyrusQRIntracellular Signaling Peptides and ProteinsGene Expression Regulation DevelopmentalMembrane ProteinsProteinsEmbryonic stem cellCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurenervous systemMutationMedicineNeuroscienceProteïnes030217 neurology & neurosurgerySignal Transduction
researchProduct

Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development

2020

VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of …

0301 basic medicineNeurogenesisSynaptogenesisNeurotransmissionInhibitory postsynaptic potentialHippocampusSynaptic Transmission03 medical and health sciencesGlutamatergicMice0302 clinical medicineVGCCsexcitation to inhibition balanceBiological neural networkPremovement neuronal activityAnimalsHumansCalcium SignalingResearch ArticlesNeuronssynaptogenesisChemistryGeneral NeuroscienceGlutamate receptornetwork connectivityRats030104 developmental biologyHEK293 CellsExcitatory postsynaptic potentialalpha2delta subunitsCalcium ChannelsNerve NetNeuroscience030217 neurology & neurosurgeryCellular/MolecularThe Journal of Neuroscience
researchProduct

Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain

2017

Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse cont…

0301 basic medicineNeurotransmitter transportermedicine.medical_specialtyMice03 medical and health sciencesProgranulins0302 clinical medicinePeripheral Nerve InjuriesInternal medicinemental disordersmedicineAnimalsPrefrontal cortexMolecular BiologyGranulinsMice KnockoutIon Transportbusiness.industryChronic painmedicine.diseaseZinc030104 developmental biologyNociceptionEndocrinologyCompulsive behaviorNeuropathic painPeripheral nerve injuryIntercellular Signaling Peptides and ProteinsNeuralgiaMolecular MedicineChronic Painmedicine.symptomCarrier Proteinsbusiness030217 neurology & neurosurgeryFrontotemporal dementiaBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Cranial Pair I: The Olfactory Nerve

2018

The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory ner…

0301 basic medicineOlfactory systemHistologyCranial nervesCentral nervous systemSensory systemOlfactionBiology03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemOlfactory nerveNeuropilmedicineOlfactory ensheathing gliaAnatomyNeuroscience030217 neurology & neurosurgeryEcology Evolution Behavior and SystematicsBiotechnologyThe Anatomical Record
researchProduct

Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency

2020

ABSTRACTParkinson’s disease (PD) is a neurodenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. The pathological hallmark of PD is the loss of dopaminergic neurons in the substantia nigra pars compacta, which causes striatal dopamine deficiency. Although most PD cases are sporadic (iPD), approximately 5-10% of all patients suffer from monogenic PD forms caused by highly penetrant rare mutations segregating with the disease in families (fPD). One of the genes linked to monogenic PD is DJ-1. Mutations in DJ-1 cause autosomal recessive early-onset forms of fPD; however, it has been shown that an over-oxidized and inactive for…

0301 basic medicineParkinson's diseaseProtein CarbonylationProtein Deglycase DJ-1MutantNerve Tissue ProteinsSubstantia nigraBiologymedicine.disease_causeBiochemistryNeuroprotection03 medical and health sciences0302 clinical medicinePhysiology (medical)medicineAnimalsDrosophila ProteinsHumansGlycolysisGeneLoss functionPars compactaChemistryDopaminergicParkinson Diseasemedicine.diseasePhenotypeCell biologyOxidative Stress030104 developmental biologyDrosophilaGlycolysis030217 neurology & neurosurgeryOxidative stressFree Radical Biology and Medicine
researchProduct

Identification of potential therapeutic compounds for Parkinson's disease using Drosophila and human cell models.

2017

Abstract Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5–10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early…

0301 basic medicineParkinson's diseaseProtein Deglycase DJ-1Drug Evaluation PreclinicalSubstantia nigraNerve Tissue ProteinsBiologymedicine.disease_causeBiochemistryAnimals Genetically Modified03 medical and health sciences0302 clinical medicineDopaminePhysiology (medical)Cell Line TumorDrug DiscoverymedicineAnimalsDrosophila ProteinsHumansGeneticsMutationPars compactaNeurodegenerationDopaminergicParkinson Diseasemedicine.diseaseDisease Models AnimalOxidative Stress030104 developmental biologyGene Knockdown TechniquesMutationCancer researchDrosophila030217 neurology & neurosurgeryOxidative stressLocomotionmedicine.drugFree radical biologymedicine
researchProduct

The quality of cortical network function recovery depends on localization and degree of axonal demyelination

2016

AbstractMyelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state. In this study, we sought to characterize the time course of sensory and behavioral alterations induced…

0301 basic medicinePathologymedicine.medical_specialtyImmunologyCentral nervous systemSensationMedizinSensory systemBiologyAdaptive ImmunityWhite matter03 medical and health sciencesBehavioral NeuroscienceCuprizoneMice0302 clinical medicineWhite matter lesionmedicineBiological neural networkAnimalsRemyelinationGray MatterPathologicalMyelin SheathCerebral CortexBehavior AnimalEndocrine and Autonomic SystemsMultiple sclerosisLysophosphatidylcholinesThalamocortical systemRecovery of Functionmedicine.diseaseWhite MatterElectrodes ImplantedMice Inbred C57BLGray matter lesion030104 developmental biologymedicine.anatomical_structureRemyelinationDemyelinationTonotopyNerve NetNeuroscience030217 neurology & neurosurgeryDemyelinating Diseases
researchProduct

Inflammatory polyradiculoneuropathies: Clinical and immunological aspects, current therapies, and future perspectives

2020

Inflammatory polyradiculoneuropathies are heterogeneous disorders characterized by immune-mediated leukocyte infiltration of peripheral nerves and nerve roots leading to demyelination or axonal degeneration or both. Inflammatory polyradiculoneuropathies can be divided into acute and chronic: Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy and their variants. Despite major advances in immunology and molecular biology have been made in the last years, the pathogenesis of these disorders is not completely understood. This review summarizes the current literature of the clinical features and pathogenic mechanisms of inflammatory polyradiculoneuropathies and focuses…

0301 basic medicinePathologymedicine.medical_specialtyNerve rootImmunologylcsh:MedicineChronic inflammatory demyelinating polyneuropathymedicine.disease_causeGuillain–Barré syndromeinflammatory neuropathiesAutoimmunity03 medical and health scienceschronic inflammatory demyelinating polyneuropathy0302 clinical medicineperipheral nervous systemmedicineImmunology and AllergyGuillain-Barre syndromebusiness.industryautoimmunitylcsh:Rmedicine.diseasePeripheral030104 developmental biologymedicine.anatomical_structurePeripheral nervous systemSettore MED/26 - NeurologianeurophysiologybusinessInfiltration (medical)030217 neurology & neurosurgeryEuropean Journal of Inflammation
researchProduct

Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair.

2017

OBJECTIVEMultiple factors may affect functional recovery after peripheral nerve injury, among them the lesion site and the interval between the injury and the surgical repair. When the nerve segment distal to the lesion site undergoes chronic degeneration, the ensuing regeneration (when allowed) is often poor. The aims of the current study were as follows: 1) to examine the expression changes of the neuregulin 1/ErbB system during long-term nerve degeneration; and 2) to investigate whether a chronically denervated distal nerve stump can sustain nerve regeneration of freshly axotomized axons.METHODSThis study used a rat surgical model of delayed nerve repair consisting of a cross suture betw…

0301 basic medicinePathologymedicine.medical_specialtyTime FactorsNerve rootNeuregulin-1Settore MED/19 - Chirurgia PlasticaSchwann cellNRG1/ErbB system03 medical and health sciences0302 clinical medicinePeripheral Nerve InjuriesMedicineAnimalsNeuregulin 1Rats Wistardelayed nerve repairDenervationneuregulin 1biologybusiness.industryRegeneration (biology)General MedicineAnatomyRecovery of FunctionDenervationMedian nerveNerve RegenerationRats030104 developmental biologymedicine.anatomical_structureperipheral nervePeripheral nerve injuryNerve Degenerationstereologybiology.proteinFemaleSchwann CellsbusinessEpineurial repair030217 neurology & neurosurgeryJournal of neurosurgery
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct