Search results for "Neural"

showing 10 items of 2783 documents

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)ta3112Radio spectrumSynchronizationlcsh:RC321-571Correlation03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineBiological neural networkMethodsTime domainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySimulationEvent (probability theory)rat cortical cellsMEAmicroelectrode array213 Electronic automation and communications engineering electronicsspectral entropyInformation processingCorrectiondeveloping neuronal networksMultielectrode array217 Medical engineering030104 developmental biologycorrelationmouse cortical cellsBiological systemsynchronization030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

2019

As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call "snippets". These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…

0301 basic medicineComputer sciencePlace cellMachine learningcomputer.software_genreSpatial memorySynthetic data03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineModels of neural computationGeneticsReinforcement learningMolecular BiologyEcology Evolution Behavior and SystematicsEcologybusiness.industryReservoir computingSnippet030104 developmental biologyComputational Theory and MathematicsModeling and SimulationSequence learningArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryPLOS Computational Biology
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2017

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

0301 basic medicineComputer sciencebusiness.industryProcess (engineering)Deep learningFeature extractionFeature selection02 engineering and technologyMachine learningcomputer.software_genreConvolutional neural networkTask (project management)03 medical and health sciences030104 developmental biologyRecurrent neural network0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceRepresentation (mathematics)businesscomputer
researchProduct

Brain-like large scale cognitive networks and dynamics

2018

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming bra…

0301 basic medicineConnectomicsQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryGeneral Physics and AstronomyCognitionPattern recognitionCognitive network03 medical and health sciencesPhysics and Astronomy (all)030104 developmental biology0302 clinical medicineNeuroimagingConnectomeGeneral Materials ScienceSegmentationAdjacency matrixArtificial intelligenceMaterials Science (all)Physical and Theoretical Chemistrybusiness030217 neurology & neurosurgery
researchProduct

Bumetanide prevents brain trauma-induced depressive-like behavior

2019

AbstractBrain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels not available. Using controlled-cortical impact (CCI) as experimental model of brain trauma in adult mouse we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on appearance of depression-like behavior. We demonstrate that this alteration in behavior is associated with a block of CCI-induced decrease in parvalbumin-positive interneurons and impairmen…

0301 basic medicineDOWN-REGULATIONpotassium chloride cotransporter 2 (KCC2)[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyHippocampusUP-REGULATION0302 clinical medicineMedicineCOTRANSPORTER KCC2NEURAL STEM-CELLBrain traumaDepression (differential diagnoses)Original Research0303 health sciencesNeurogenesisDepolarizationNeural stem cell3. Good healthADULT HIPPOCAMPAL NEUROGENESISneurogenesis[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologydepressionBumetanidemedicine.druginterneuron cell deathpsychiatric diseaseINHIBITIONbumetanidelcsh:RC321-571Cellular and Molecular Neuroscience03 medical and health sciencesINJURYlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular Biology030304 developmental biologybusiness.industryMechanism (biology)GRANULE CELLSDentate gyrusAntagonist3112 Neurosciences[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology030104 developmental biologyDENTATE GYRUSDIURETIC BUMETANIDE[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologybusinessNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

In Situ Representations and Access Consciousness in Neural Blackboard or Workspace Architectures

2018

Phenomenal theories of consciousness assert that consciousness is based on specific neural correlates in the brain, which can be separated from all cognitive functions we can perform. If so, the search for robot consciousness seems to be doomed. By contrast, theories of functional or access consciousness assert that consciousness can be studied only with forms of cognitive access, given by cognitive processes. Consequently, consciousness and cognitive access cannot be fully dissociated. Here, the global features of cognitive access of consciousness are discussed based on neural blackboard or (global) workspace architectures, combined with content addressable or "in situ" representations as …

0301 basic medicineElectromagnetic theories of consciousnessComputer scienceProcess (engineering)lcsh:Mechanical engineering and machineryin situ representationsmedia_common.quotation_subjectWorkspacelcsh:QA75.5-76.9503 medical and health sciences0302 clinical medicineArtificial Intelligencelcsh:TJ1-1570global workspacemedia_commonRobotics and AICognitive scienceaccess consciousnessNeural correlates of consciousnessneural blackboard architecturesCognitionconnection pathsBlackboard (design pattern)Computer Science Applications030104 developmental biologyCovertPerspectiverobotslcsh:Electronic computers. Computer scienceConsciousness030217 neurology & neurosurgeryFrontiers in Robotics and AI
researchProduct

Sema3a plays a role in the pathogenesis of CHARGE syndrome

2018

CHARGE syndrome is an autosomal dominant malformation disorder caused by heterozygous loss of function mutations in the chromatin remodeler CHD7. Chd7 regulates the expression of Sema3a, which also contributes to the pathogenesis of Kallmann syndrome, a heterogeneous condition with the typical features hypogonadotropic hypogonadism and an impaired sense of smell. Both features are common in CHARGE syndrome suggesting that SEMA3A may provide a genetic link between these syndromes. Indeed, we find evidence that SEMA3A plays a role in the pathogenesis of CHARGE syndrome. First, Chd7 is enriched at the Sema3a promotor in neural crest cells and loss of function of Chd7 inhibits Sema3a expression…

0301 basic medicineEmbryo NonmammalianKallmann syndromePHENOTYPIC SPECTRUMmedicine.disease_causeSeverity of Illness IndexEpigenesis GeneticPathogenesisAXON GUIDANCECHD7CHARGE syndromeXenopus laevis0302 clinical medicineHYPOGONADOTROPIC HYPOGONADISMPromoter Regions GeneticGenetics (clinical)GeneticsMutationGeneral MedicinePhenotypeDNA-Binding ProteinsNEURAL CREST CELLSNeural CrestHomeobox Protein Nkx-2.5MIGRATIONBiology03 medical and health sciencesHypogonadotropic hypogonadismKALLMANN-SYNDROMEGeneticsmedicineAnimalsHumansEpigeneticsSHORT STATUREMolecular BiologyLoss functionMUTATIONSGenetic Complementation TestDNA HelicasesSemaphorin-3AKallmann Syndromemedicine.diseaseDisease Models Animal030104 developmental biologyHEK293 CellsXENOPUS-EMBRYOSMutationCHARGE Syndrome030217 neurology & neurosurgery
researchProduct