Search results for "Neurologic"

showing 10 items of 473 documents

Co-registering kinematics and evoked related potentials during visually guided reach-to-grasp movements.

2013

Background:In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated.Methodology/Principal Findings:We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and g…

MaleAnatomy and PhysiologyVisual Systemlcsh:MedicineKinematicsBioinformaticsBrain mappingParietal Lobelcsh:ScienceBrain MappingMultidisciplinaryHand StrengthMedicine (all)StatisticsParietal lobeMotor CortexSensory SystemsBiomechanical PhenomenaElectrophysiologymedicine.anatomical_structureMedicineFemaleMotor cortexHumanResearch ArticleAdultCognitive NeuroscienceMovementNeurophysiologyIntraparietal sulcusBiologyStimulus (physiology)BiostatisticsNeurological SystemPremotor cortexMotor ReactionsmedicineHumansStatistical MethodsBiologyMotor SystemsBiochemistry Genetics and Molecular Biology (all)Settore M-PSI/02 - Psicobiologia E Psicologia Fisiologicalcsh:RIndex fingerEvoked Potentials MotorHandbody regionsAgricultural and Biological Sciences (all)lcsh:QNeuroscienceMathematicsPsychomotor PerformanceNeurosciencePLoS ONE
researchProduct

Self-Relevance Appraisal Influences Facial Reactions to Emotional Body Expressions

2013

International audience; People display facial reactions when exposed to others' emotional expressions, but exactly what mechanism mediates these facial reactions remains a debated issue. In this study, we manipulated two critical perceptual features that contribute to determining the significance of others' emotional expressions: the direction of attention (toward or away from the observer) and the intensity of the emotional display. Electromyographic activity over the corrugator muscle was recorded while participants observed videos of neutral to angry body expressions. Self-directed bodies induced greater corrugator activity than other-directed bodies; additionally corrugator activity was…

MaleAnatomy and Physiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEmotionslcsh:MedicineFacial MusclesAngerAngerSocial and Behavioral SciencesFacial recognition system[SCCO]Cognitive science0302 clinical medicinePsychologyEmotional expressionlcsh:Sciencemedia_commonMultidisciplinary05 social sciencesExperimental PsychologyFacial ExpressionFacial musclesmedicine.anatomical_structureMental HealthMedicineFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Cognitive psychologyResearch ArticleAdultmedia_common.quotation_subjectCognitive NeuroscienceNeurophysiologyBiologyEmotional processing050105 experimental psychologyNeurological System03 medical and health sciencesYoung AdultMotor ReactionsPerceptionmedicineHumans0501 psychology and cognitive sciences[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Facial feedback hypothesisBiologyMotor SystemsFacial expressionBehaviorElectromyographylcsh:RNeurosciencesRecognition Psychology[SCCO] Cognitive scienceSelf ConceptNeurons and Cognitionlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryNeuroscience
researchProduct

Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats.

2013

International audience; A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat …

MaleAnatomy and Physiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionSensory PhysiologyEnzyme Metabolismlcsh:MedicineQuinolonesBiochemistryCarboxylesterasechemistry.chemical_compoundPentanols0302 clinical medicineCoumarinsEnzyme Inhibitorslcsh:Sciencechemistry.chemical_classification0303 health sciencesMultidisciplinaryEnzyme ClassesEsterasesSensory SystemsEnzymes3. Good healthElectrophysiologyProtein Transportmedicine.anatomical_structureBiochemistryMedicineSensory PerceptionMetabolic PathwaysResearch ArticleIsoamyl acetateBiologyNeurological SystemXenobiotics03 medical and health sciencesOlfactory mucosaOlfactory MucosaTransferasesmedicineAnimalsRats WistarBiology030304 developmental biologyOlfactory Systemlcsh:RGlycosyltransferasesCytochrome P450MonooxygenaseOlfactory PerceptionRatsMetabolismEnzymechemistryOdorantsBiocatalysisbiology.proteinlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOlfactory epithelium030217 neurology & neurosurgeryDrug metabolismNeuroscience
researchProduct

Neuromuscular Fatigue Is Not Different between Constant and Variable Frequency Stimulation

2014

International audience; This study compared fatigue development of the triceps surae induced by two electrical stimulation protocols composed of constant and variable frequency trains (CFTs, VFTs, 450 trains, 30 Hz, 167 ms ON, 500 ms OFF and 146 ms ON, 500 ms OFF respectively). For the VFTs protocol a doublet (100 Hz) was used at the beginning of each train. The intensity used evoked 30% of a maximal voluntary contraction (MVC) and was defined using CFTs. Neuromuscular tests were performed before and after each protocol. Changes in excitation-contraction coupling were assessed by analysing the M-wave [at rest (M-max) and during MVC (M-sup)] and associated peak twitch (Pt). H-reflex [at rest…

MaleAnatomy and Physiologymedicine.medical_treatmentStimulationElectromyographyCELLULAR MECHANISMSACTIVATION[SCCO]Cognitive science0302 clinical medicineVOLUNTARYHuman PerformancePsychologyEvoked potentialMusculoskeletal SystemComputingMilieux_MISCELLANEOUSMultidisciplinaryCALCIUM STORESmedicine.diagnostic_test[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]ChemistryQRPRESYNAPTIC INHIBITIONHUMAN SKELETAL-MUSCLEHealthy VolunteersElectrophysiologyMental HealthNeuromuscular fatigueEXCITABILITYMuscle Fatigue[ SCCO.NEUR ] Cognitive science/NeuroscienceCardiologyMuscleMedicine[ SCCO ] Cognitive sciencemedicine.symptomMuscle ContractionResearch ArticleMuscle contractionAdultmedicine.medical_specialtyClinical Research DesignScienceQUADRICEPS MUSCLENeurological System03 medical and health sciencesInternal medicinemedicineHumansSports and Exercise MedicineBiologySoleus muscleBehaviorSurvey ResearchCONTRACTIONSElectromyography030229 sport sciencesELECTRICAL-STIMULATIONEvoked Potentials MotorElectric StimulationIntensity (physics)Transcranial magnetic stimulationPhysiotherapy and Rehabilitation030217 neurology & neurosurgery
researchProduct

Cell type-specific circuits of cortical layer IV spiny neurons

2003

Sensory signal processing in cortical layer IV involves two major morphological classes of excitatory neurons: spiny stellate and pyramidal cells. It is essentially unknown how these two cell types are integrated into intracortical networks and whether they play different roles in cortical signal processing. We mapped their cell-specific intracortical afferents in rat somatosensory cortex through a combination of whole-cell patch-clamp recordings and caged glutamate photolysis. Spiny stellate cells received monosynaptic excitation and inhibition originating almost exclusively from neurons located within the same barrel. Pyramidal cells, by contrast, displayed additional excitatory inputs fr…

MaleCell typePatch-Clamp TechniquesModels NeurologicalGlutamic AcidNeural InhibitionSensory systemBiologybiocytinSomatosensory systemInhibitory postsynaptic potentiallayer IVsomatosensoryinhibitory inputsddc:590morphologyAnimalsPatch clampRats WistarARTICLEslicesCells CulturedNeuronspyramidal cellAfferent Pathwayscaged glutamatePyramidal CellsGeneral Neurosciencespiny stellate cellfunctional connectivityExcitatory Postsynaptic PotentialsNeural InhibitionSomatosensory CortexelectrophysiologyJRatsexcitatory inputsExcitatory postsynaptic potentialHepatic stellate cellbarrel cortexNeuroscience
researchProduct

Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex

2016

Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimul…

MaleCentral Nervous System0301 basic medicineTime FactorsPhysiologyDeep Brain Stimulationmedicine.medical_treatmentHippocampusAntidepressantLocal field potentialElectroencephalographyHippocampus0302 clinical medicineNeural PathwaysNeural Circuits and SystemsBrain oscillationsmutual informationPrefrontal cortexOriginal Researchlocal field potentialBehavior Animalmedicine.diagnostic_testChemistryElectroencephalographySignal Processing Computer-AssistedAmygdalamodulatory indexmedicine.anatomical_structureAnesthesiaDeep brain stimulationbrain oscillationsInfralimbic cortexPrefrontal CortexAmygdalaNeurological Conditions Disorders and Treatments03 medical and health sciencesPhysiology (medical)medicineAnimalsRats WistarCognitive and Behavioural NeuroscienceModulatory indexLocal field potentialBrain WavesMutual information030104 developmental biologynervous systemNeuroscience030217 neurology & neurosurgeryBasolateral amygdala
researchProduct

Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease.

2011

Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial β-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspa(lacZ/+)) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (…

MaleCentral Nervous SystemCerebellumPathologyAnatomy and PhysiologyCanavan DiseaseMouseMutantlcsh:MedicineNeural HomeostasisBiochemistryMiceNeurobiology of Disease and Regenerationlcsh:ScienceSex CharacteristicsMultidisciplinaryNeuromodulationNeurochemistryGenomicsAnimal ModelsFunctional Genomicsmedicine.anatomical_structureLac OperonNeurologyHomeostatic MechanismsMedicineFemaleNeurochemicalsGenetic EngineeringResearch ArticleNervous System PhysiologyBiotechnologymedicine.medical_specialtyTransgeneCentral nervous systemNeurophysiologyMice TransgenicNeuroimagingBiologyNeurological SystemAmidohydrolasesWhite matterModel OrganismsGeneticsmedicineAnimalsBiologyNeuropeptidesLeukodystrophylcsh:RComputational Biologymedicine.diseaseMolecular biologyCanavan diseaseAspartoacylaseDisease Models AnimalMetabolismnervous systemSmall MoleculesCellular NeuroscienceMetabolic DisordersMutationGenetics of DiseaseNervous System Componentslcsh:QGene FunctionMolecular NeuroscienceAnimal GeneticsNeurosciencePLoS ONE
researchProduct

Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma

2017

Objective To determine if perfusion in surgical cavity wall enhancement (SCWE) obtained in early post-treatment MR imaging can stratify time-to-progression (TTP) in glioblastoma. Materials and methods This study enrolled 60 glioblastoma patients with more than 5-mm-thick SCWEs as detected on contrast-enhanced MR imaging after concurrent chemoradiation therapy. Two independent readers categorized the shape and perfusion state of SCWEs as nodular or non-nodular and as having positive or negative perfusion compared with the contralateral grey matter on arterial spin labeling (ASL). The perfusion fraction on ASL within the contrast-enhancing lesion was calculated. The independent predictability…

MaleCentral Nervous Systemlcsh:MedicineContrast MediaKaplan-Meier EstimatePathology and Laboratory MedicineNervous SystemDiagnostic Radiology030218 nuclear medicine & medical imaging0302 clinical medicineFunctional Magnetic Resonance ImagingMedicine and Health SciencesBlastomasMedicinelcsh:ScienceNeurological TumorsBrain MappingMultidisciplinarymedicine.diagnostic_testBrain NeoplasmsRadiology and ImagingChemoradiotherapyCombined Modality TherapyMagnetic Resonance ImagingDacarbazinePerfusionmedicine.anatomical_structureOncologyNeurology030220 oncology & carcinogenesisDisease ProgressionFemaleAnatomymedicine.symptomPerfusionResearch Articlemedicine.drugImaging TechniquesSurgical and Invasive Medical ProceduresNeuroimagingGrey matterResearch and Analysis MethodsLesion03 medical and health sciencesSigns and SymptomsText miningDiagnostic MedicineArterial Spin LabellingImage Interpretation Computer-AssistedTemozolomideHumansAgedTemozolomideSurgical Resectionbusiness.industryProportional hazards modellcsh:RCancers and NeoplasmsBiology and Life SciencesMagnetic resonance imagingmedicine.diseaseLesionslcsh:QSpin LabelsGlioblastomabusinessNuclear medicineGlioblastoma MultiformeNeuroscienceGlioblastomaPLOS ONE
researchProduct

SPG10 is a rare cause of spastic paraplegia in European families.

2008

Contains fulltext : 71099.pdf (Publisher’s version ) (Closed access) BACKGROUND: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date. OBJECTIVE: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype. PATIENTS AND METHODS: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families. RESULTS: Th…

MaleDNA Mutational AnalysisKinesinsHEREDITARYmedicine.disease_cause0302 clinical medicineSpasticPerception and Action [DCN 1]Missense mutationKIF5AAge of OnsetChildFrameshift MutationMUTATIONGenes DominantGeneticsNeurologic Examination0303 health sciencesMutationSplice site mutationSITEExonsMiddle AgedAnterograde axonal transport3. Good healthPedigreeEuropePsychiatry and Mental healthPhenotypeATAXIASChild PreschoolFemaleChromosome DeletionMOTORFunctional Neurogenomics [DCN 2]AdultNeuromuscular diseaseGenotypeHereditary spastic paraplegiaMutation Missense03 medical and health sciencesCognitive neurosciences [UMCN 3.2]medicineHumansGait Disorders Neurologic030304 developmental biologyChromosome Aberrationsbusiness.industrySpastic Paraplegia HereditarySequence Analysis DNAmedicine.diseaseGENEPeripheral neuropathyGenetics PopulationSurgeryNeurology (clinical)RNA Splice Sitesbusiness030217 neurology & neurosurgeryJournal of neurology, neurosurgery, and psychiatry
researchProduct

Distributed analysis of simultaneous EEG-fMRI time-series: modeling and interpretation issues

2009

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) represent brain activity in terms of a reliable anatomical localization and a detailed temporal evolution of neural signals. Simultaneous EEG-fMRI recordings offer the possibility to greatly enrich the significance and the interpretation of the single modality results because the same neural processes are observed from the same brain at the same time. Nonetheless, the different physical nature of the measured signals by the two techniques renders the coupling not always straightforward, especially in cognitive experiments where spatially localized and distributed effects coexist and evolve temporally at different …

MaleDefault-modeBrain activity and meditationComputer scienceinstrumentation/methodsElectroencephalographycomputer.software_genreSynchronizationComputer-AssistedModelsEEGEvoked PotentialsDefault mode networkParametric statisticsVisual CortexBrain Mappingmedicine.diagnostic_testfMRISettore MED/37 - NeuroradiologiaElectroencephalographyMagnetic Resonance ImagingPattern Recognition VisualNeurologicalVisualAdultModels NeurologicalBiomedical EngineeringBiophysicsPattern RecognitionMachine learningEEG-fMRISensitivity and SpecificitymethodsImage Interpretation Computer-AssistedmedicineHumansRadiology Nuclear Medicine and imagingComputer SimulationImage Interpretationbusiness.industryWorking memoryWorking memoryReproducibility of ResultsPattern recognitionAdult Brain Mapping; methods Computer Simulation Electroencephalography; methods Evoked Potentials; Visual; physiology Humans Image Interpretation; Computer-Assisted; methods Magnetic Resonance Imaging; instrumentation/methods Male Models; Neurological Pattern Recognition; physiology Reproducibility of Results Sensitivity and Specificity Visual Cortex; physiologyDistributed source modelingphysiologyEvoked Potentials VisualArtificial intelligencebusinessFunctional magnetic resonance imagingcomputer
researchProduct