Search results for "Neuron"
showing 10 items of 2611 documents
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders
2020
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures wi…
TOX3 regulates neural progenitor identity
2016
The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…
NO Hemodynamic Speed Limit for Hippocampal Neurogenesis
2019
Newborn dentate granule cells (DGCs) are continuously generated in the adult brain. The mechanism underlying how the adult brain governs hippocampal neurogenesis remains poorly understood. In this study, we investigated how coupling of pre-existing neurons to the cerebrovascular system regulates hippocampal neurogenesis. Using a new in vivo imaging method in freely moving mice, we found that hippocampus-engaged behaviors, such as exploration in a novel environment, rapidly increased microvascular blood flow velocity in the dentate gyrus. Importantly, blocking this exploration-elevated blood flow dampened experience-induced hippocampal neurogenesis. By imaging the neurovascular niche in comb…
Fetal neurogenesis: breathe HIF you can.
2016
Blood vessels are part of the stem cell niche in the developing cerebral cortex, but their in vivo role in controlling the expansion and differentiation of neural stem cells (NSCs) in development has not been studied. Here, we report that relief of hypoxia in the developing cerebral cortex by ingrowth of blood vessels temporo‐spatially coincided with NSC differentiation. Selective perturbation of brain angiogenesis in vessel‐specific Gpr124 null embryos, which prevented the relief from hypoxia, increased NSC expansion at the expense of differentiation. Conversely, exposure to increased oxygen levels rescued NSC differentiation in Gpr124 null embryos and increased it further in WT embryos, s…
Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development
2020
VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of …
Intrinsic volatility of synaptic connections — a challenge to the synaptic trace theory of memory
2017
According to the synaptic trace theory of memory, activity-induced changes in the pattern of synaptic connections underlie the storage of information for long periods. In this framework, the stability of memory critically depends on the stability of the underlying synaptic connections. Surprisingly however, synaptic connections in the living brain are highly volatile, which poses a fundamental challenge to the synaptic trace theory. Here we review recent experimental evidence that link the initial formation of a memory with changes in the pattern of connectivity, but also evidence that synaptic connections are considerably volatile even in the absence of learning. Then we consider different…
Tuning neural circuits by turning the interneuron knob
2017
Interneurons play a critical role in sculpting neuronal circuit activity and their dysfunction can result in neurological and neuropsychiatric disorders. To temporally structure and balance neuronal activity in the adult brain interneurons display a remarkable degree of subclass-specific plasticity, of which the underlying molecular mechanisms have recently begun to be elucidated. Grafting new interneurons to pre-existing neuronal networks allows for amelioration of circuit dysfunction in rodent models of neurological disease and can reopen critical windows for circuit plasticity. The crucial contribution of specific classes of interneurons to circuit homeostasis and plasticity in health an…
A stable brain from unstable components: Emerging concepts and implications for neural computation.
2017
Neuroscientists have often described the adult brain in similar terms to an electronic circuit board- dependent on fixed, precise connectivity. However, with the advent of technologies allowing chronic measurements of neural structure and function, the emerging picture is that neural networks undergo significant remodeling over multiple timescales, even in the absence of experimenter-induced learning or sensory perturbation. Here, we attempt to reconcile the parallel observations that critical brain functions are stably maintained, while synapse- and single-cell properties appear to be reformatted regularly throughout adult life. In this review, we discuss experimental evidence at multiple …
Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication.
2020
Synaptic transmission and plasticity are shaped by the dynamic reorganization of signaling molecules within pre- and postsynaptic compartments. The nanoscale organization of key effector molecules has been revealed by single-particle trajectory (SPT) methods. Interestingly, this nanoscale organization is highly heterogeneous. For example, presynaptic voltage-gated calcium channels (VGCCs) and postsynaptic ligand-gated ion channels such as AMPA receptors (AMPARs) are organized into so-called nanodomains where individual molecules are only transiently trapped. These pre- and postsynaptic nanodomains are characterized by a high density of molecules but differ in their molecular organization an…
Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo
2016
Summary - The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiati…