6533b86cfe1ef96bd12c8cb6
RESEARCH PRODUCT
Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo
Carolyn A. LarabellCarolyn A. LarabellE. Josephine ClowneyAngela YenAngela YenBradley M. ColquittMark A. Le GrosStavros LomvardasMarkko MyllysManolis KellisManolis KellisEirene Markenscoff-papadimitriouAngeliki Magklarasubject
0301 basic medicineNucleolusChromosomal Proteins Non-Histonenuclear organizationCellular differentiationBioinformaticsImagingMicechemistry.chemical_compound0302 clinical medicineHeterochromatinTomographyMice KnockoutNeuronsTomography X-RayNeurogenesisCell DifferentiationdifferentiationOlfactory BulbChromatin3. Good healthChromatinCell biologyChromosomal Proteinsneurogenesismedicine.anatomical_structureCell NucleolusHeterochromatinKnockoutNeurogenesisBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleCell fate commitment03 medical and health sciencesImaging Three-Dimensionalolfactory sensory neuronsmedicineAnimalsta114nucleusEpithelial CellsNon-Histonesoft X-ray tomography030104 developmental biologychemistryChromobox Protein Homolog 5Three-DimensionalX-RaychromatinBiochemistry and Cell BiologyNucleus030217 neurology & neurosurgeryDNAdescription
Summary - The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatin toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.
year | journal | country | edition | language |
---|---|---|---|---|
2016-11-01 | Cell Reports |